МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Забайкальский государственный университет» (ФГБОУ ВО «ЗабГУ»)

Ракультет естественных наук, математики и технологий Сафедра Физики	
	УТВЕРЖДАЮ:
	Декан факультета
	Факультет естественных наук, математики и технологий
	Токарева Юлия Сергеевна
	«»20 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.02.01 Физика атомного ядра и элементарных частиц на 144 часа(ов), 4 зачетных(ые) единиц(ы) для направления подготовки (специальности) 44.03.05 - Педагогическое образование (с двумя профилями подготовки)

составлена в соответс	твии с ФГОС ВО	, утвержденным приказом
Министерства образ	вования и науки Р	Российской Федерации от
« »	20	г. №

Профиль – Информатика и физика (для набора 2022) Форма обучения: Очная

1. Организационно-методический раздел

1.1 Цели и задачи дисциплины (модуля)

Цель изучения дисциплины:

- освоение студентами основных понятий и методов квантового описания строения и структуры атомного ядра, процессов ядерного распада и взаимодействия частиц;
- формирование у студентов целостного в рамках существующих естественнонаучных положений представления об основных закономерностях физики ядра и элементарных частиц и методах их исследования.

Задачи изучения дисциплины:

1. Раскрыть особенности современного этапа развития науки физики. 2. Продемонстрировать фундаментальный характер проблем физики атомного ядра и элементарных частиц. 3. Рассмотреть основы физики атома и элементарных частиц: основные понятия, процессы, законов и теорий; 4. Овладеть экспериментальными методами исследования явлений на уровне микромира, методами измерения основных ядернофизических величин; 5. Создать концептуальную базу для работы в области современной физики. 6. Способствовать формированию навыков абстрактного мышления, анализа, синтеза, развитию общекультурного уровня магистрантов.

1.2. Место дисциплины (модуля) в структуре ОП

Дисциплина Б1.В.02.01 «Физика атомного ядра и элементарных частиц» относится к части, формируемой участниками образовательных отношений. В структуре образовательной программы по направлению 44.03.05 Педагогическое образование, направленность «Информатика и физика» данная дисциплина входит в модуль «Физика». Дисциплина связана с дисциплинами «Общая физика», «Естественнонаучная картина мира», «Теоретическая физика», «Практикум по решению физических задач».

1.3. Объем дисциплины (модуля) с указанием трудоемкости всех видов учебной работы

Общая трудоемкость дисциплины (модуля) составляет 4 зачетных(ые) единиц(ы), 144 часов.

Виды занятий	Семестр 8	Всего часов
Общая трудоемкость		144
Аудиторные занятия, в т.ч.	48	48
Лекционные (ЛК)	24	24
Практические (семинарские) (ПЗ, СЗ)	24	24
Лабораторные (ЛР)	0	0

Самостоятельная работа студентов (СРС)	60	60
Форма промежуточной аттестации в семестре	Экзамен	36
Курсовая работа (курсовой проект) (КР, КП)		

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

I/	п
Код и Индикаторы до компетенции рамках дисп	пруемые в навыки и (или) опыт деятельности
педагогические перии социализатиндикаторы и особенностей трае их возможные девоосновы их пси	принципы онирования тогических) бразования общества; ие, этические, отогические комерности, принципы) ятельности; овационные цепции и личности, видуальных рий жизни, ии, а также магностики; одидактики, бразования, ведения в законы проявления свойств, законы

ОПК-8	ОПК-8.2. Уметь осуществлять педагогическое целеполагание и решать задачи профессиональной педагогической деятельности на основе специальных научных знаний; оценивать результативность собственной педагогической деятельности	Уметь: • осуществля педагогическое целеполагание обучении школьников физмикромира в основной и средшколе; • выбирать способы решения за профессиональной деятельно учителя физики, при изуче основ ядерной физики и физэлементарных частиц; • оценивать результативно собственной деятельности основе самоанализа
ОПК-8	ОПК-8.3. Владеть алгоритмами и технологиями осуществления профессиональнойпедагогической деятельности на основе специальных научных знаний; приемами педагогической рефлексии; навыками развития у обучающихся познавательной активности, самостоятельности, инициативы, творческих способностей, формирования гражданской позиции, способности к труду и жизни в условиях современного мира, формирования у обучающихся культуры здорового и безопасного образа жизни	Владеть: • технология осуществления профессиональ педагогической деятельно учителя физики при раскры особенностей современного эт развития науки физики; • приемами раскры фундаментального характ проблем физики атомного ядр элементарных частиц; • приемами рефлексии в проце осуществления педагогичес деятельности учителя физики
ПК-1	ПК-1.1. Знать содержание, сущность, закономерности, принципы и особенности изучаемых явлений и процессов, базовые теории в предметной области (в области информатики и физики); закономерности, определяющие место предметов (информатика, физика) в общей картине мира: программы и учебники по преподаваемым предметам (информатика, физика); основы общетеоретических дисциплин в объеме, необходимом для решения педагогических, научнометодических и организационно-	Знать: • содержание, сущно закономерности, принципы особенности изучаемых явлени процессов, базовые теории области ядерной физики элементарных частиц; • закономерности, определяют взаимодействие элементарт частиц; • содержание и структ программ и учебников по разд «Квантовая физика» курса физиля классов с углублени изучением физики; • особенности современного эт развития науки физика экспериментальные мете

	управленческих задач (педагогика, психология, возрастная физиология; школьная гигиена; методика преподавания предмета)	исследования явлений на уровне микромира
ПК-1	ПК-1.2. Уметь анализировать базовые предметные научнотеоретические представления о сущности, закономерностях, принципах и особенностях изучаемых явлений и процессов	Уметь: • анализировать базовые предметные представления о сущности, закономерностях, принципах и особенностях изучаемых явлений микромира; • использовать базовые предметные научно-теоретические представления физики микромира при обучении школьников физике
ПК-1	ПК-1.3. Владеть навыками понимания и системного анализа базовых научно-теоретических представлений для решения профессиональных задач	Владеть: • навыками позволяющими демонстрировать фундаментальный характер проблем физики атомного ядра и элементарных частиц: • приемами раскрытия особенностей современного этапа развития науки физики при решении профессиональных задач, реализуемых в педагогической деятельности учителя физики; • навыками системного анализа базовых научно-теоретических представлений физики микромира

3. Содержание дисциплины

3.1. Разделы дисциплины и виды занятий

3.1 Структура дисциплины для очной формы обучения

Модуль	Номер раздела	Наименование раздела	Темы раздела	Всего часов		(итор аняті		C P
					Л К	П 3 (С 3)	Л Р	С
1	1.1	Основы физики атомного ядра	Состав атомных ядер. Свойства атомных ядер Нуклон-нуклонное взаимодействие и	26	8	6	0	12

			свойства ядерных сил Модели атомных ядер					
2	2.1	Ядерные реакции	Реакции, протекающие через составное ядро. Прямые реакции	10	4	2	0	4
	2.2	Взаимодейств ие излучения с веществом	Обзор процессов взаимодействия частиц и излучений с веществом	8	0	2	0	6
3	3.1	Радиоактивно сть и ядерная спектроскопи я	Общая характеристика. Естественная радиоактивность Искусственная радиоактивность. Ядерные технологии	18	4	4	0	10
	3.2	Физика элементарных частиц	Общие свойства элементарных частиц. Частицы и взаимодействия	10	4	2	0	4
4	4.1	Физика высоких энергий	Физика высоких энергий	14	0	4	0	10
	4.2	Современные астрофизичес кие представления	Фундаментальные взаимодействия. Термоядерные реакции Гипотеза большого взрыва	22	4	4	0	14
		Итого		108	24	24	0	60

3.2. Содержание разделов дисциплины

3.2.1. Лекционные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Состав атомных ядер. Свойства атомных ядер	Состав атомных ядер. Радиоактивность. Массы ядер и энергии связи. Размер и форма ядер. Спины и четности ядерных состояний. Магнитные моменты ядер	4
	1.1	Ядерные силы	Ядерные силы, межнуклонное взаимодействие, свойства. Сильное	4

			взаимодействие. Ядерные силы как проявление фундаментального сильного взаимодействия	
2	2.1	Ядерные реакции	Введение и обозначения. Понятие сечения ядерной реакции. Формула Резерфорда и упругое рассеяние. Ядерный потенциал. Реакции, протекающие через составное ядро. Прямые реакции	4
3	3.1	Радиоактивно сть	Радиоактивные ряды. Виды радиоактивности. Закономерности альфа-распада, закон Гейгера-Нетолла. Закономерности бетараспада, правило Сарджента. Гаииаизлучение	4
	3.2	Физика элементарных частиц	Элементарные частицы, определение и классификация. Гипотеза кварков. Правило Накано-Нишиджимы-Геллмана. Фундаментальные бозоны и фермионы, Стандартная Модель в физике частиц. Кванты полей взаимодействий	4
4	4.2	Фундаменталь ные взаимоде йствия	Электромагнитные взаимодействия. Сильные взаимодействия. Слабые взаимодействия. Дискретные симметрии. Законы сохранения электрического, лептонного и барионного зарядов при взаимодействиях элементарных частиц	4

3.2.2. Практические занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Состав атомных ядер	Статические свойства атомных ядер. Состав ядер, Электрический и барионный заряды. Энергия связи ядер. Формула Вейцзекера. Ядерные спины. Магнитные дипольные моменты ядер. Размеры ядер. Форма ядер. Статистика. Четность	2
	1.1	Нуклон- нуклонное вза	Ядерные силы, свойства ядерных сил. Мезонная модель Юкавы для	2

		имодействие и свойства ядерных сил	ядерных сил. Пи-мезоны. Сильное взаимодействие	
	1.1	Модели атомных ядер	Особенности модельных представлений о ядре. Классификация ядерных моделей. Коллективные модели ядра. Одночастичные модель ядра	2
2	2.1	Ядерные реакции	Ядерные реакции. Законы сохранения в ядерных реакциях. Общие свойства ядерных реакций. Сечения ядерных реакций при низких энергиях. Механизмы ядерных реакций. Составное ядро. Резонансные реакции. Прямые ядерные реакции. Фотоядерные и электро-ядерные реакции.	2
	2.2	Взаимодейств ие излучения с веществом	Обзор процессов взаимодействия частиц и излучений с веществом. Взаимодействие тяжелых заряженных частиц со средой. Взаимодействие электронов со средой	2
3	3.1	Общая характ еристика. Естественная радиоактивно сть	Радиоактивность. Основной закон радиоактивного распада. Альфараспад. Бета-распад. Гаммаизлучение ядер Решение задач по теме	2
	3.1	Искусственна я радиоактивн ость. Ядерные технологии	Искусственная радиоактивность: деление, синтез. Ядерные технологии. Цепная ядерная реакция. Принцип действия АЭС.	2
	3.2	Физика элементарных частицы	Экспериментальное подтверждение кварковой теории: Отсутствие кварков в свободном состоянии. Эксперименты, подтверждающие наличие кварков в адронах. Глубоко неупругое рассеяние электронов нуклонами. Струи адронов. Проявление цвета кварков в е-е+-аннигиляции. Тяжёлые кварки — с, b, t.	2
4	4.1	Эксперименты	Эксперименты в физике высоких	2

	в физике высоких энергий	энергий Принципы и методы ускорения заряженных частиц. Трековые детекторы. Масспектрографы	
4.1	Техника ускорителей	Линейные ускорители, циклические ускорители: физические основы, принцип действия. БАК.	2
4.2	Термоядерные реакции. Гипотеза большого взрыва	Реакции синтеза. Свидетельства Большого взрыва. Плотность Вселенной. Состав Вселенной. Первые мгновения Вселенной. Дозвёздный синтез ядер. Ядерные реакции в звездах. Заключительные стадии жизни звезд. Сверхновые. Чёрные дыры. Конечные этапы эволюции Вселенной	4

3.2.3. Лабораторные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)

3.3. Содержание материалов, выносимых на самостоятельное изучение

Модуль	Номер раздела	Содержание материалов, выносимого на самостоятельное изучение	Виды самостоятельной деятельности	Трудоемкость (в часах)
1	1.1	Основные характеристики атомных ядер. Квантовые и характеристики ядерных состояний. Магические числа. Моменты ядер. Характеристики дейтрона. Свойства ядерных сил. Нуклоннуклонный потенциал.	Решение задач Составление конспекта Подготовка к самостоятельной работе Подготовка к семинарским занятиям	8
	1.1	Капельная модель ядра. Формула Вайцзеккера для энергии связи ядра в капельной модели. Простейшие применения	Составление конспекта Подготовка сообщений с презентацией Подготовка к семинарским занятиям	4

		капельной модели. Модель Ферми-газа. Глубина ядерного потенциального ящика в модели Ферми-газа, экспериментальные подтверждения. Оболочечная модель. Объяснение некоторых свойств ядер в рамках оболочечной модели. Обобщенная и оптическая модели ядер		
2	2.1	Ядерные реакции. Законы сохранения. Каналы реакции. Связь между сечениями реакций. Механизмы ядерных реакций. Прямые реакции. Модель составного ядра. Симметрия впередназад. Резонансные и нерезонансные реакции. Формула Брайта-Вигнера. Оптическая модель.	Решение задач Составление конспекта Подготовка к самостоятельной работе	4
	2.2	Обзор процессов взаимодействия частиц и излучений с веществом. Взаимодействие тяжелых заряженных частиц со средой. Упругое рассеяние и ионизация Ионизационные потери энергии тяжелыми заряженными частицами. Влияние свойств среды и частиц. Взаимодействие электронов со средой. Потери энергии на ионизацию и тормозное излучение Излучение Вавилова-Черенкова Взаимодействие гамма излучения с веществом. Эффект Комптона и рождение пар	Решение задач Составление конспекта Подготовка сообщений с презентацией Подготовка к семинарским занятиям	6

3	3.1	Радиоактивность:	Решение задач	10
		Естественная и	Подготовка к	
		искусственная	самостоятельной работе	
		радиоактивность.		
		Статистический характер		
		радиоактивности. Закон		
		радиоактивного распада. Альфа- распад.		
		Зависимость периода		
		распада от энергии		
		альфа- частицы.		
		Туннельный эффект. [] []		
		распад. Энергетический		
		спектр электронов.		
		Нарушение четности.		
		Радиоактивные ряды.		
		Гамма- излучение ядер.		
		Вероятности переходов.		
		Ядерная изомерия.		
		Искусственная		
		радиоактивность:		
		деление, синтез. Ядерные		
		технологии		
	3.2	Частицы и	Решение задач	4
		взаимодействия.	Составление конспекта	
		Симметрии и законы	Подготовка сообщений с	
		сохранения. Космические	презентацией Подготовка	
		лучи. Квантовые числа	к семинарским занятиям	
		элементарных частиц.	Составление аннотаций на	
		Нейтринная физика и	статью	
		астрономия: солнечные		
		нейтрино, поиски массы		
		нейтрино, двойной β-		
		распад, нейтринные осцилляции. Кварки и		
		глюоны. Квантовая		
		хромодинамика. Кварк-		
		глюонная плазма.		
		Проблема темной		
		материи (скрытой массы)		
4	A 1		Cogranyerve	10
4	4.1	Принципы и методы	Составление конспекта Подготовка сообщений с	10
		ускорения заряженных частиц: линейные	презентацией Подготовка	
		ускорители, циклические	к семинарским занятиям	
		ускорители, циклические ускорители. Методы	к семинарским заплилм	
		детектирования частиц.		
		Масспектрографы. БАК.		

4.2	Становление теории	Составление конспекта	14
	слабого взаимодействия.	Подготовка сообщений с	
	Роль слабых сил.	презентацией Подготовка	
	Лептонные заряды. Типы	к семинарским занятиям	
	нейтрино. Константа	Составление аннотаций на	
	слабого взаимодействия.	статью Итоговое	
	Закон сохранения	тестирование	
	чётности. Р-симметрия.		
	Несохранение чётности в		
	слабых взаимодействиях.		
	Зарядовое сопряжение.		
	СР-преобразование.		
	Зарядовая чётность.		
	Обращение времени.		
	Нарушение СР-		
	инвариантности. СРТ-		
	теорема. Первые этапы		
	объединения		
	взаимодействий.		
	Константы		
	взаимодействий. Великое		
	объединение.		
	Предсказания теорий		
	Великого объединения.		
	Распад протона.		
	Монополь Дирака.		
	Великая пустыня.		
	Поколения		
	фундаментальных		
	фермионов. Нейтрино.		
	Суперсимметрия. Теория		
	суперструн Структурные		
	особенности и масштабы		
	Вселенной. Космология.		
	Эволюция Вселенной.		
	Эволюция Земли и ее		
	термодинамическая		
	система. Проблема		
	возникновения жизни на		
	Земле. Звезды и физика		
	звезд. Эволюция звезд.		
	Сверхновые звезды,		
	пульсары и черные дыры.		
	Квазары и ядра галактик.		
	Эволюция галактик		

4. Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств текущего контроля и промежуточной аттестации по итогам освоения дисциплины представлен в приложении.

Фонд оценочных средств

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

5.1.1. Печатные издания

- 1. Мухин К.Н. Экспериментальная ядерная физика, т.1. Физика атомного ядра. СПб.: Лань, 2009 384 с.
- 2. Валантэн, Л. Субатомная физика: ядра и частицы: в 2 т. Т. 2: Дальнейшее развитие / Валантэн Л. Москва: Мир, 1986. 336с.: ил. 1-80. Беспалов В.И. Взаимодействие ионизирующих излучений с веществом: учебное пособие. Томск: Изд-во Томского политехнического университета, 2008.

5.1.2. Издания из ЭБС

- 1. Бекман, Игорь Николаевич. Ядерные технологии: Учебник / Бекман И.Н. 2-е изд. Электрон. дан. М: Издательство Юрайт, 2018. 404. (Университеты России). 2-е издание. ISBN 978-5-534-00418-2: 949.00. Ссылка на ресурс: http://www.biblioonline.ru/book/544E97B7-6B6B-4696-AD7F-E1DD08E7E6CC
- 2. Кузнецов, Сергей Иванович. Физика: оптика. элементы атомной и ядерной физики. элементарные частицы: Учебное пособие / Кузнецов С.И. Электрон. дан. М: Издательство Юрайт, 2018. 301. (Университеты России). 1-е издание. ISBN 978-5-534-01420-4: 589.00. Ссылка на ресурс: http://www.biblio-online.ru/book/F3137DF8-BE69-4CDA-A647-4727B9830251
- 3. Иоффе, Борис Лазаревич. Физика элементарных частиц: квантовая хромодинамика в 2 т. Том 2: учебное пособие для вузов: Учебное пособие / Иоффе Б. Л., Липатов Л. Н., Фадин В. С. 2-е изд. Электрон. дан. М: Издательство Юрайт, 2018. 344. (Авторский учебник). ISBN 978-5-534-08087-2: 659.00. Ссылка на ресурс: http://www.biblioonline.ru/book/360FB01D-C945-425C-BD88-665CAFA49EB3

5.2. Дополнительная литература

5.2.1. Печатные издания

- 1. Вайнберг, С. Открытие субатомных частиц : пер. с англ. Москва : Мир, 1986. 285 с. 0-80.
- 2. Бояркин, О.М. Введение в физику элементарных частиц. 2-е изд. испр. и доп. Москва : КомКнига, 2006. 264 с. ISBN 5-484-00375-X : 295-00.
 - 3. Федоров В.В. Нейтронная физика. Учебное пособие. СПб: Изд-во ПИЯФ, 2004. 192 с.

5.2.2. Издания из ЭБС

1. Милантьев, Владимир Петрович. Атомная физика: Учебник и практикум / Милантьев

В.П. - 2-е изд. - Электрон. дан. - М : Издательство Юрайт, 2018. - 415. - (Бакалавр. Академический курс). - 2-е издание. - ISBN 978-5-534-00405-2 : 779.00. Ссылка на ресурс: http://www.biblio-online.ru/book/B8A5CD56-861F-4E07-8688-3E1530FF86E3

5.3. Базы данных, информационно-справочные и поисковые системы

Название	Ссылка
карта нуклидов.	https://ru.wikipedia.org/wiki/%D0%A2%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D0%B0_%D0%B8%D0%B7%D0%BE%D1%82%D0%BE%D0%BF%D0%BE%D0%B2
таблица атомных масс	https://www-nds.iaea.org/amdc/
калькулятор энергий отделения и распадов	http://nuclphys.sinp.msu.ru/anuc/anuc10.htm

6. Перечень программного обеспечения

Программное обеспечение общего назначения: ОС Microsoft Windows, Microsoft Office, ABBYY FineReader, ESET NOD32 Smart Security Business Edition, Foxit Reader, АИБС "МегаПро".

Программное обеспечение специального назначения:

7. Материально-техническое обеспечение дисциплины

Наименование помещений для проведения учебных занятий и для самостоятельной работы обучающихся	Оснащенность специальных помещений и помещений для самостоятельной работы
Учебные аудитории для проведения занятий лекционного типа	Состав оборудования и технических средств обучения указан в паспорте аудитории,
Учебные аудитории для проведения практических занятий	закрепленной расписанием по факультету
Учебные аудитории для промежуточной аттестации	
Учебные аудитории для проведения групповых и индивидуальных консультаций	Состав оборудования и технических средств обучения указан в паспорте аудитории,
Учебные аудитории для текущей аттестации	закрепленной расписанием по кафедре

8. Методические рекомендации по организации изучения дисциплины

Общие методические рекомендации по изучению дисциплины Практика преподавания дисциплины демонстрирует тот факт, что, несмотря на доступность необходимой информации по дисциплине (наличие учебников, учебных и учебнометодических пособий и печатном виде, в ЭБС, возможность получения информации из ресурсов сети интернет и т.д.), серьезные затруднения у магистрантов вызывают анализ, синтез, систематизация материала, а также выделение в нем принципиальных и сущностных аспектов, отвечающим современным научным концепциям и подходам.

В связи с этим для эффективного освоения материала дисциплины необходимым является выполнение следующих требований:

- обязательное посещение всех семинарских и практических занятий, способствующее системному овладению материалом курса;
- все вопросы соответствующих разделов и тем по дисциплине необходимо фиксировать (на любых носителях информации);
- обязательное выполнение домашних заданий является важнейшим требованием и условием формирования целостного и системного знания по дисциплине;
- обязательность личной активности каждого магистранта на всех занятиях по дисциплине;
- в случаях неясности каких-либо вопросов, обсуждаемых на занятиях, необходимо задать соответствующие вопросы преподавателю, а не оставлять их непонятыми;
- в случаях пропусков занятий по уважительным причинам магистрантам предоставляется право подготовки и представления заданий и ответов на вопросы изученного материала, с расчетом на помощь преподавателя в его усвоении;
- в случаях пропусков без уважительной причины магистрант обязан самостоятельно изучить соответствующий материал;
- необходимым условием является самостоятельность и инициативность магистрантов при контроле набора баллов по дисциплине для успешного прохождения промежуточной аттестации.

Порядок организации самостоятельной работы студентов

Самостоятельная работа студентов предполагает:

- самостоятельный поиск, обработку (анализ, синтез, обобщение и систематизацию), адаптацию необходимой по дисциплине информации;
- выполнение заданий для самостоятельной работы;
- изучение и усвоение теоретического материала, представленного в соответствующих литературных источниках (рекомендуемая основная и дополнительная литература);
- самостоятельное изучение отдельных вопросов курса;
- подготовка к практическим и лабораторным занятиям, в соответствии с рекомендациями преподавателя (выполнение конкретных заданий, соответствующие организационные действия и т.д.).

Как правило, организация самостоятельной работы предполагает:

- постановку цели;
- составление соответствующего плана;
- поиск, обработку информации;
- представление результатов работы.

Методические рекомендации по отдельным видам учебно-познавательной деятельности студентов

1. Методические рекомендации при подготовке к практическим занятиям

Для повышения эффективности проведения практических занятий необходимо учитывать все рекомендации по подготовке к ним, которые даются преподавателем в начале каждого модуля (формулируются соответствующие задания, проблемно-ориентированные вопросы,

представляются рекомендации по методике организации различных форм проведения занятий и т.д.). Определенные формы и методы работы на занятиях требуют предварительной самостоятельной подготовки магистрантов (например, внутригрупповая и межгрупповая дискуссии, ролевые игры, подготовка итогового семестрового проекта и т.д.). Поэтому необходимо фиксировать все рекомендации преподавателя по подготовке к занятиям.

Для эффективного освоения материала дисциплины в ходе практических занятий необходимо выполнение следующих требований:

- четко понимать цели предстоящих занятий (предварительно формулируются преподавателем):
- владеть навыками поиска, обработки, адаптации и презентации необходимого материала;
- уметь четко формулировать и отстаивать собственный взгляд на рассматриваемые проблемные вопросы, который необходимо подкреплять адекватной аргументацией;
- уметь выделять и формулировать противоречия по рассматриваемым проблемам, понимая их источники;
- владеть навыками публичного выступления (логично, ясно и лаконично излагать свои мысли; адекватно оценивать восприятие и понимание слушателями представляемого материала; отвечать на задаваемые вопросы; приводить адекватные и убедительные аргументы в защиту своей позиции и т.д.);
- уметь критически оценивать собственные знания, умения и навыки в динамике в сравнении с таковыми у других, с целью раскрытия дополнительных возможностей их развития;
- при подготовке к занятиям обязательно изучить рекомендуемую литературу;
- оценить различные точки зрения на проблемные вопросы нескольких исследователей, а не ограничиваться рассмотрением позиции одного автора;
- при формулировке собственной точки зрения предусмотреть убедительную ее аргументацию и возможность возникновения спорных ситуаций;
- владеть навыками работы в команде (при выполнении определенных заданий, предполагающих работу в микрогруппах, при проведении ролевых игр, дискуссий и т.д.). Семинар вид практических занятий, предусматривающий самостоятельную проработку магистрами содержания учебной дисциплины и последующим представлением и обсуждением результатов этого изучения (в различных формах). Семинары представляют собой своеобразный синтез теоретической подготовки студентов с практической, основу которого составляет систематическая самостоятельная учебно-познавательная деятельность магистрантов.
- 2. Методические рекомендации при подготовке индивидуальных сообщений (докладов) Данный вид учебно-познавательной деятельности требует от магистрантов достаточно высокого базового уровня подготовки, большой степени самостоятельности и целого ряда умений и навыков серьезной интеллектуальной работы.

Работа по подготовке индивидуальных сообщений и докладов предполагает достаточно длительную системную работу студента, а также в случае необходимости консультативную помощь преподавателя.

Работа должна быть тщательно продумана, спланирована и разделена на соответствующие этапы, каждый из которых требует целого ряда определенных умений и навыков:

- определение и формулировка темы сообщения или доклада (либо осмысление темы, сформулированной преподавателем в соответствующих случаях);
- составление плана с использованием анализа, синтеза, обобщения и логики построения изложения материала;

- определение источников информации;
- работа с источниками научной информации (подбор, анализ, обобщение, систематизация, адаптация и т.д.);
- формулировка основных обобщений и выводов по результатам анализа изученного материала.

Структура сообщения (доклада) может обоснованно варьировать, но в большинстве случаев она предполагает наличие следующих частей: вступления (обозначение актуальности и постановка проблемы), основной части (обзор различных точек зрения на проблему и ее решение), заключения (формулировка соответствующих обобщений, выводов, предположений и перспектив), а в соответствующих случаях – перечня используемых источников информации.

3. Методические рекомендации по подготовке к дискуссии

Дискуссия выступает важнейшим средством активизации познавательной деятельности. Как метод активного обучения дискуссия может использоваться как в рамках традиционных (развернутая беседа, система докладов и рефератов), так и новых форм практических занятий (анализ конкретных ситуаций, ролевая игры, круглый стол и т.д.).

Выделяется особая форма семинарского занятия – семинар-дискуссия. Различают следующие разновидности семинара-дискуссии:

- 1. По объему охватываемого материала:
- фрагментарные дискуссии («мини-дискуссии») (предназначенные для обсуждения какогото конкретного вопроса и занимающие, как правило, определенную часть занятия);
- развернутые дискуссии (посвященные изучению раздела (темы) в целом, охватывающие одно или несколько занятий);
- 2. По реальности существования участников:
- реальные (предполагающие общение с реальными участниками);
- воображаемые (предполагающие общение с воображаемым оппонентом (инсценировка спора)).

Организация дискуссии предполагает последовательность определенных этапов: подготовка дискуссии; проведение дискуссии; анализ итогов дискуссии.

Самым важным этапом при этом является подготовка к дискуссии, т.к. все последующие этапы определяются именно качеством предварительной подготовки. Подготовка к дискуссии, как правило, включает следующие составляющие:

- определение темы дискуссии (тема может быть задана преподавателем, а также обсуждаться и выбираться в процессе изучения материала по критериям наличия противоречий, проблемно-ориентированного характера при высокой актуальности, научной и социальной значимости);
- определение предмета дискуссии (с тем, чтобы не потерять время на обсуждение второстепенных аспектов проблемы);
- определение задач дискуссии (для организации целенаправленности, разделения функций участников дискуссии, экономии времени).

Подготовка к дискуссии должна предполагать индивидуальные и групповые консультации, предназначенные для задания целенаправленности дискуссии, а также – для активизации самостоятельной работы студентов. При этом преподавателю необходимо избегать детального разъяснения содержания проблемы, т.к. в этом случае не о чем будет спорить, и дискуссия будет сорвана. Задача преподавателя должна состоять в ненавязчивой помощи участникам будущей дискуссии в определении наличия противоречивых точек зрения на рассматриваемую проблему, порекомендовав изучить первоисточники и дополнительную литературу.

4. Методические рекомендации по подготовке к выполнению проекта

Метод проектов – это способ достижения дидактических целей через детальную разработку проблемы, которая должна завершиться реальным практическим результатом, представленным тем или иным образом. Данный метод ориентирован на самостоятельную деятельность студентов, которой они занимаются в течение определенного отрезка времени (например, семестра).

Метод проектов предполагает определенную совокупность учебно-познавательных приемов, позволяющих решить ту или иную проблему в результате самостоятельных действий с обязательной презентацией этих результатов. Очевидно, что корректнее говорить не о методе проектов, а о соответствующей технологии, включающей в себя целый комплекс исследовательских, поисковых, проблемных методов, творческих по своей сути.

Требования к использованию метода проектов:

- включение проекта в учебный (учебно-воспитательный) процесс;
- наличие значимой в научном и социальном плане проблемы, требующей исследовательского поиска для ее решения;
- теоретическая, практическая, познавательная значимость предполагаемых результатов;
- самостоятельная деятельность студентов;
- структурирование содержательной части проекта (с выделением поэтапных результатов и распределением функций участников);
- определение методологии исследования (постановка проблемы, формулировка цели, гипотезы, задач, определение методов и т.д.);
- выделение и оценка необходимых условий для реализации проекта;
- наличие у участников грамотной письменной речи;
- оформление и представление результатов;
- анализ полученных результатов, подведение итогов, формулировка выводов.

Методика работы над проектом:

- выделение проблемы;
- постановка цели;
- формулировка темы;
- определение количества участников;
- определение и распределение функций (в соответствии с задачами);
- самостоятельная работа участников проекта в соответствии с задачами и функциями;
- промежуточные обсуждения результатов и заданий;
- оформление результатов проекта;
- презентация и защита проекта;
- обсуждение и анализ полученных результатов (с выделение сильных и слабых сторон проекта, успехов и ошибок);
- формулирование выводов.

Общие критерии оценки проекта:

- актуальность проблемы;
- новизна информации;
- полнота и глубина проникновения в проблему;
- качество представленного материала;
- привлечение знаний из различных научных областей;
- установление межпредметных связей;
- степень активность каждого участника проекта;
- коллективный характер принимаемых решений;
- характер взаимодействия в группе;

- умение аргументировать и делать выводы;
- культура речи;
- использование современных средств представления результатов проекта;
- эстетика оформления результатов проекта;
- умение отвечать на вопросы оппонентов.

Помимо общих критериев в каждом конкретном случае должны выделяться и частные критерии оценки, ориентированные на конкретные дидактические цели.

Важнейшим аспектом в реализации метода проектов является сотрудничество преподавателя и участников проекта.

Разработчик/группа разработчиков: Светлана Ефимовна Старостина
Типовая программа утверждена
Согласована с выпускающей кафедрой Заведующий кафедрой
«»20г