МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Забайкальский государственный университет» (ФГБОУ ВО «ЗабГУ»)

Энергетический факультет	
Кафедра Физики и техники связи	УТВЕРЖДАЮ:
	Декан факультета
	Энергетический факультет
	Батухтин Андрей Геннадьевич
	«»20
	Γ.
РАБОЧАЯ ПРОГРАММА ДИСЦІ	иплины (МОДУЛЯ)
Б1.В.21 Метрология в оптических телеко на 72 часа(ов), 2 зачетных (для направления подготовки (специальности) 1 технологии и системы	ые) единиц(ы) 1.03.02 - Инфокоммуникационные
составлена в соответствии с ФГОС ВО, Министерства образования и науки Ро «» 20	оссийской Федерации от
Профиль – Оптические системы и сети связи (для на Форма обучения: Очная	абора 2021)

1. Организационно-методический раздел

1.1 Цели и задачи дисциплины (модуля)

Цель изучения дисциплины:

Целью преподавания дисциплины «Метрология в оптических телекоммуникационных системах» является подготовка будущего специалиста в области инфокоммуникационных технологий и систем связи к практической деятельности в области обеспечения качества услуг оптических телекоммуникаций за счет организации эффективного метрологического обеспечения опирающегося на достижения передовой науки и практики. Данная цель реализуется за счет изучения общих принципов организации метрологического обеспечения оптических телекоммуникационных систем, изучения методов и технических средств, обеспечивающих измерение основных оптических параметров и характеристик, изучения методов и средств обработки результатов измерений, изучения методов и средств тестирования.

Задачи изучения дисциплины:

Основные задачи дисциплины заключаются в изучении методов измерений основных параметров оптических телекоммуникационных систем, их отдельных элементов и способов обеспечения требуемой точности измерений. Способность осуществлять монтаж, наладку, регулировку, опытную проверку работоспособности, испытания и сдачу в эксплуатацию сооружений, средств и оборудования сетей и организаций связи Умение разрабатывать и оформлять различную проектную и техническую документацию.

1.2. Место дисциплины (модуля) в структуре ОП

Учебная дисциплина «Метрология в оптических телекоммуникационных системах» является обязательной, входит в блок Б1.В.21.

1.3. Объем дисциплины (модуля) с указанием трудоемкости всех видов учебной работы

Общая трудоемкость дисциплины (модуля) составляет 2 зачетных(ые) единиц(ы), 72 часов.

Виды занятий	Семестр 5	Всего часов
Общая трудоемкость		72
Аудиторные занятия, в т.ч.	34	34
Лекционные (ЛК)	17	17
Практические (семинарские) (ПЗ, СЗ)	0	0
Лабораторные (ЛР)	17	17
Самостоятельная работа	38	38

студентов (СРС)		
Форма промежуточной аттестации в семестре	Зачет	0
Курсовая работа (курсовой проект) (КР, КП)		

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые рез	зультаты освоения образовательной программы	Планируемые результаты обучения по дисциплине
Код и наименование компетенции	Индикаторы достижения компетенции, формируемые в рамках дисциплины	Дескрипторы: знания, умения, навыки и (или) опыт деятельности
ОПК-4	Способен применять современные компьютерные технологии для подготовки текстовой и конструкторскотехнологической документации с учетом требований нормативной документации	Знать: Знать: Пороговый: 1) Знать место и роль метрологии в современных оптических инфокоммуникационных системах; 2) принципы построения и функционирования аналоговых и цифровых измерительных приборов; 3) оптические компоненты в телекоммуникационных системах 4) выбор способов обеспечения требуемой точности измерений; Стандартный: 1) методы измерений основных параметров оптических телекоммуникационных систем и их отдельных элементов; 2) использования специализированных программ по расчету и моделированию оптических инфокоммуникационных систем; 3) формулировать основные технические требования к телекоммуникационным сетям и системам. Эталонный: 1) принципы действия основных СИ оптического диапазона; 2) методы оценки и измерения показателей ошибок ВОСП 3) стандарты связи, протоколы,

современных методов управления потоками трафика в инфокоммуникационных системах и сетях и методы проведения испытаний;

Уметь: Уметь: Пороговый: выбирать необходимые СИ для решения конкретных измерительных задач; 2) самостоятельно работать на компьютере и в компьютерных сетях, моделировать компьютере устройства, на системы И процессы использованием универсальных пакетов прикладных компьютерных программ Стандартный: 1) использования аппаратуры для измерения параметров телекоммуникационных систем 2) применять принципы метрологического обеспечения и способы инструментальных измерений, используемых в области оптических технологий и систем 3) принципы связи построения и функционирования аналоговых и цифровых измерительных приборов; Эталонный: 1) выполнять аналитические расчеты, компьютерное моделирование, экспериментальные измерения и испытания элементов, узлов и модулей оптических инфокоммуникационных систем для различных технических задач; 2) использовать современные информационные компьютерные технологии, способствующие повышению эффективности научной деятельности; 3) осуществлять работы по методам компьютерного моделирования оптических

		инфокоммуникационных систем;
		Владеть: Владеть: Пороговый: 1) получить практические навыки в проведении измерений в оптическом диапазоне. 2) основными приёмами технической эксплуатации и метрологического обеспечения аппаратуры и систем оптических телекоммуникаций 3) методы, обеспечивающие безопасность эксплуатации оптических линий связи Стандартный: 1) тенденциями и перспективами развития метрологии в оптических инфокоммуникационных системах, включая смежные области науки, техники и промышленного производства. 2) выбор способов обеспечения требуемой точности измерений; 3) навыками разработки нормативных документов и технической документов и технической документации. Эталонный: 1) осуществлять контроль параметров и характеристик оптических инфокоммуникационных систем при различных воздействиях; 2) прогнозировать и анализировать экономические и экологические последствия новых технических решений. 3) использовать современные информационные и компьютерные технологии, способствующие повышению эффективности научной деятельности;
ПК-1	Способен осуществлять монтаж, наладку, настройку, регулировку, опытную проверку работоспособности, испытания и	Знать: Знает порядок и последовательность проведения работ по обслуживанию радиоэлектронных средств и

	сдачу в эксплуатацию сооружений, средств и оборудования сетей	радиоэлектронных систем различного назначения;
		Уметь: Умеет применять современные отечественные и зарубежные средства измерения и контроля, проводить инструментальные измерения;
		Владеть: Владеет современными отечественными и зарубежными пакетами программ при решении схемотехнических, системных и сетевых задач, правилами и методами монтажа, настройки и регулировки узлов радиотехнических устройств и систем.
ПК-3	Способность осуществлять монтаж, настройку, регулировку тестирование оборудования, отработку режимов работы, контроль проектных параметров работы, испытания оборудования связи обеспечение соответствия технических параметров инфокоммуникационных систем и/или их составляющих, установленным эксплуатационнотехническим нормам	Знать: Знает методики проведения проверки технического состояния оборудования, трактов и каналов передачи; Уметь: Умеет вести техническую, оперативно- техническую и технологическую документацию по установленным формам; осуществлять проверку качества работы оборудования и средств связи; Владеть: Владеет навыками тестирования оборудования и отработки режимов работы оборудования;
ПК-4	Способен проводить мониторинг состояния оборудования, учет отказов оборудования, ведения документации, проведение ремонтно-восстановительных работ и плановопрофилактических работ	Знать: Знает общие принципы функционирования оборудования; проведения ремонтных и восстановительных работ; Уметь: Умеет производить мониторинг работы оборудования; Владеть: Владеет навыками по учету и отказов оборудования и ведения документации

3. Содержание дисциплины

3.1. Разделы дисциплины и виды занятий

3.1 Структура дисциплины для очной формы обучения

Модуль	Номер раздела	Наименование раздела	Темы раздела	Всего часов	_	штор аняті		C P
					Л К	П 3 (С 3)	Л Р	С
1	1.1	Параметры, измеряемые в оптических те лекоммуникац ионных системах. Особенности и роль метрологии в современных оптических те лекоммуникац ионных системах. Измерительны е задачи в оптических те лекоммуникац ионных системах. Основные понятия и определения системы метро логического обеспечения в оптических те лекоммуникац ионных системы метро логического обеспечения в оптических те лекоммуникац иях.	Параметры, измеряемые в оптических телекоммуникационных системах. Особенности и роль метрологии в современных оптических телекоммуникационных системах. Измерительные задачи в оптических телекоммуникационных системах. Основные понятия и определения системы метрологического обеспечения в оптических телекоммуникациях.	8	2	0	2	4
	1.2	Измерительны е задачи, решаемые в процессе производства, строительства	Понятия контроля, тестирования, анализа протоколов. Измерительные задачи, решаемые в процессе производства,	8	2	0	2	4

		и эксплуатации оптических те лекоммуникац ионных систем.	строительства и эксплуатации оптических телекоммуникационных систем. Виды измерений систем передачи: настроечные, приемосдаточные, эксплуатационные плановые и эксплуатационные внеплановые.					
2	2.1	Особенности измерений в оптическом ди апазонеОсобе нности измерений в оптическом диапазоне	Основные измеряемые параметры оптических многомодовых и одномодовых волокон. Основные измеряемые параметры и характеристики оптических излучателей и фотоприемных устройств. Основные измеряемые параметры каналов и трактов оптических телекоммуникационных систем. Основные измерения в многоволновых системах передачи. Измеряемые параметры оптических усилителей.	8	2	0	2	4
	2.2	Виды и методы измерений с помощью оптических ре флектометров	Рефлектометрические измерения параметров оптических систем передачи. Оптические рефлектометры. Основные принципы построения и устройство рефлектометров. Технические и метрологические характеристики рефлектометров. Минирефлектометры. Рефлектометр как многофункциональное средство измерений в	8	2	0	2	4

			оптических системах передач. Виды и методы измерений с помощью оптических рефлектометров. Измерение затухания, определение места повреждения кабеля, контроль стыков. Рефлектометрические измерения параметров оптических систем передачи. Оптические рефлектометры. Основные принципы построения и устройство рефлектометров. Технические и метрологические характеристики рефлектометры. Рефлектометры. Рефлектометры Минирефлектометры как многофункциональное средство измерений в оптических системах передач. Виды и методы измерений с помощью оптических рефлектометров. Измерение затухания, определение места повреждения кабеля, контроль стыков.					
3	3.1	Измерение затухания сигнала. Измерение дисперсии	Методы измерения затухания оптических волокон: метод обламывания; метод вносимых потерь. Источники погрешностей при измерении затухания. Способы достижения равновесного распределения мод в многомодовых оптических волокнах. Оптические тестеры.	8	2	0	2	4

		Основные технически е и метрологические характеристики оптических тестеров. Виды дисперсии оптических волокон: межмодовая, хроматическая, поляризационная модовая. Методы измерения межмодовой дисперсии во временной и частотной области. Методы измерения хроматической дисперсии: метод сдвига фаз, метод дифференциального сдвига фаз. Факторы, влияющие на точность измерения хроматической дисперсии. Измерение поляризационной модовой дисперсии методом сканирования длины волны					
3.2	Методы измерений параметров оптико - электронных модулей	Анализ оптического спектра. Интерферометр Фабри – Перо Анализаторы оптического спектра на основе интерферометра Фабри – Перо. Их технические и метрологические характеристики. Дифракционная решетка как оптический фильтр. Конструкции анализаторов оптического спектра на основе дифракционных решеток: однопроходный монохроматор, двухпроходный монохроматор,	8	2	0	2	4

			монохроматор Литтмана. Основные технические и метрологические характеристики анализаторов оптического спектра на основе дифракционных решеток. Методы калибровки анализаторов оптического спектра по длине волны.					
4	4.1	Основные методы из мерений п араметро в цифровы хтрактов	Основные методы исредстваизмерений параметро втрактовцифрового сигнала. Примеры измерение знергетического потенциала линии связи,	12	3	0	3	6

		измерение чувствительности приемного устройства, измерение запаса мощности, обусловленной дисперсией волокна. Дрейф и дрожание фазы. Нормы на максимальное значение дрейфа и дрожания фазы для иерархических стыков цифровых систем передачи. Измерение фазового дрожания цифровым осциллографом. Измерение фазового дрожания фазовым детектором. Измерения фазового дрожания по критерию увеличения коэффициента ошибок					
4.2	Общие принципы поверки средств измерений оптического диапазона	Контроль волоконно- оптических линий связи Системы удаленного контроля оптических кабелей. Организация измерений с закрытием и без закрытия связи. Основные направления автоматизации контроля волоконно- оптических линий связи. Поверка средств измерений оптического диапазона Общие принципы поверки средств измерений оптического диапазона. Рабочие эталоны, используемые при поверке СИ оптического диапазона. Погрешности рабочих эталонов.	12	3	0	3	6
	Итого		72	18	0	18	36

3.2. Содержание разделов дисциплины

3.2.1. Лекционные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Параметры, измеряемые в оптических те лекоммуникац ионных системах. Особенности и роль метрологии в современных оптических те лекоммуникац ионных системах.	Измерительные задачи в оптических телекоммуникационных системах. Основные понятия и определения системы метрологического обеспечения в оптических телекоммуникациях.	2
	1.2	Измерительны е задачи, решаемые в процессе производства, строительства и эксплуатации оптических те лекоммуникац ионных систем.	Понятия контроля, тестирования, анализа протоколов. Измерительные задачи, решаемые в процессе производства, строительства и эксплуатации оптических телекоммуникационных систем. Виды измерений систем передачи: настроечные, приемо- сдаточные, эксплуатационные плановые и эксплуатационные внеплановые.	2
2	2.1	Особенности измерений в оптическом диапазоне	Рефлектометрические измерения параметров оптических систем передачи. Оптические рефлектометры. Основные принципы построения и устройство рефлектометров. Технические и метрологические характеристики рефлектометров. Минирефлектометры. Рефлектометр как многофункциональное средство измерений в оптических системах передач. Виды и методы измерений с помощью оптических рефлектометров. Измерение затухания, определение места	2

			повреждения кабеля, контроль стыков.	
	2.2	Виды и методы измерений с помощью оптических ре флектометров	Рефлектометрические измерения параметров оптических систем передачи. Оптические рефлектометры. Основные принципы построения и устройство рефлектометров. Технические и метрологические характеристики рефлектометров. Минирефлектометры. Рефлектометр как многофункциональное средство измерений в оптических системах передач. Виды и методы измерений с помощью оптических рефлектометров. Измерение затухания, определение места повреждения кабеля, контроль стыков	2
3	3.1	Измерение затухания сигнала. Измерение дисперсии	Методы измерения затухания оптических волокон: метод обламывания; метод вносимых потерь. Источники погрешностей при измерении затухания. Способы достижения равновесного распределения мод в многомодовых оптических волокнах. Оптические тестеры. Основные технически е и метрологические характеристики оптических тестеров. Виды дисперсии оптических волокон: межмодовая, хроматическая, поляризационная модовая. Методы измерения межмодовой дисперсии во временной и частотной области. Методы измерения хроматической дисперсии: метод сдвига фаз, метод дифференциального сдвига фаз.	2
	3.2	Методы измерений параметров оптико - электронных модулей	Анализ оптического спектра. Интерферометр Фабри – Перо Анализаторы оптического спектра на основе интерферометра Фабри – Перо. Их технические и метрологические характеристики. Дифракционная решетка как оптический фильтр. Конструкции анализаторов оптического спектра на	2

			основе дифракционных решеток: однопроходный монохроматор, двухпроходный монохроматор, монохроматор Литтмана. Основные технические и метрологические характеристики анализаторов оптического спектра на основе дифракционных решеток.	
4	4.1	Основные методы измерений параметров цифровых трактов	Основные методы и средства измерений параметров трактов цифровых телекоммуникационных систем Нормы на параметры ошибок цифровых систем передачи. Критерии оценки качества передачи в высокоскоростных сетях связи. Измерители коэффициентов ошибок. Особенности измерителей коэффициентов ошибок в системах оптического диапазона. Измерение коэффициентов ошибок с помощью псевдослучайной последовательности. Методы, основанные на анализе цифрового сигнала. Примеры измерений с использованием анализатора коэффициента ошибок: измерение энергетического потенциала линии связи, измерение чувствительности приемного устройства, измерение запаса мощности, обусловленной дисперсией волокна. Дрейф и дрожание фазы. Нормы на максимальное значение дрейфа и дрожания фазы для иерархических стыков цифровых систем передачи. Измерение фазового дрожания цифровым осциллографом	2
	4.2	Общие принципы поверки средств измерений оптического диапазона	Контроль волоконно- оптических линий связи Системы удаленного контроля оптических кабелей. Организация измерений с закрытием и без закрытия связи. Основные направления автоматизации контроля волоконно- оптических линий связи. Поверка средств измерений оптического диапазона Общие принципы поверки средств измерений оптического диапазона.	3

	Рабочие эталоны, используемые при	
	поверке СИ оптического диапазона.	
	Погрешности рабочих эталонов.	

3.2.2. Практические занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)

3.2.3. Лабораторные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Особенности измерений в оптическом диапазоне	Измерительные задачи, решаемые в процессе производства, строительства и эксплуатации оптических телекоммуникационных систем	2
	1.2	Особенности измерений в оптическом диапазоне	Измерительные задачи, решаемые в процессе производства, строительства и эксплуатации оптических телекоммуникационных систем	2
2	2.1	Виды и методы измерений с помощью оптических ре флектометров	Рефлектометрические измерения параметров оптических систем передачи. Оптические рефлектометры. Основные принципы построения и устройство рефлектометров. Технические и метрологические характеристики рефлектометров.	2
	2.2	Виды и методы измерений с помощью оптических ре флектометров	Рефлектометрические измерения параметров оптических систем передачи. Оптические рефлектометры. Основные принципы построения и устройство рефлектометров. Технические и метрологические характеристики рефлектометров.	2
3	3.1	Измерение затухания сигнала Измерение	Методы измерения затухания оптических волокон: метод обламывания; метод вносимых потерь. Способы достижения	2

		дисперсии	равновесного распределения мод в многомодовых оптических волокнах.	
	3.2	Методы измерений параметров оптико- электронных модулей	Анализ оптического спектра. Интерферометр Фабри – Перо Анализаторы оптического спектра на основе интерферометра Фабри – Перо.	2
4	4.1	Основные методы измерений параметров цифровых трактов	Основные методы и средства измерений параметров трактов цифровых телекоммуникационных систем.	2
	4.2	Общие принципы поверки средств измерений оптического диапазона	Контроль волоконно- оптических линий связи Системы удаленного контроля оптических кабелей. Организация измерений с закрытием и без закрытия связи.	3

3.3. Содержание материалов, выносимых на самостоятельное изучение

Модуль	Номер раздела	Содержание материалов, выносимого на самостоятельное изучение	Виды самостоятельной деятельности	Трудоемкость (в часах)
1	1.1	Параметры, измеряемые в оптических телекоммуникационных системах.	Подготовка сообщений и докладов работа с электронными образовательными ресурсами	4
	1.2	Измерительные задачи, решаемые в процессе производства, строительства и эксплуатации оптических телекоммуникационных систем	анализ нормативных документов работа с электронными образовательными ресурсами подготовка к собеседованию, коллоквиуму, конференции	4
2	2.1	Особенности измерений в оптическом диапазоне. Оптические ваттметры.	работа с электронными образовательными ресурсами работа с	4

		Оптические тестеры. Генераторы оптических сигналов.	компьютерными моделями подготовка к собеседованию, коллоквиуму, конференции	
	2.2	Виды и методы измерений с помощью оптических рефлектометров.	работа с электронными образовательными ресурсами работа с компьютерными моделями	4
3	3.1	Измерение затухания сигнала, Измерение дисперсии.	работа с электронными образовательными ресурсами подготовка к собеседованию, коллоквиуму, конференции	4
	3.2	Методы измерений параметров оптико- электронных модулей.	работа с электронными образовательными ресурсами подготовка к собеседованию, коллоквиуму, конференции	6
4	4.1	Основные методы измерений параметров цифровых трактов	работа с электронными образовательными ресурсами подготовка к собеседованию, коллоквиуму, конференции	6
	4.2	Общие принципы поверки средств измерений оптического диапазона. Методика поверки оптических генераторов. Методика поверки измерителей мощности. Методика поверки оптических рефлектометров	анализ нормативных документов работа с электронными образовательными ресурсами составление конспекта-плана	6

4. Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств текущего контроля и промежуточной аттестации по итогам освоения дисциплины представлен в приложении.

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

5.1.1. Печатные издания

1. 1. Бакланов, Игорь Геннадиевич. Тестирование и диагностика систем связи / Бакланов Игорь Геннадиевич. - Москва: Эко-Трендз, 2001. - 364с.: ил. - ISBN 5-88405-031-3: 110-00. 9 2. Боридько, Сергей Иванович. Метрология и электрорадиоизмерения в телекоммуникационных системах: учеб. пособие / Боридько Сергей Иванович, Дементьев Николай Васильевич, Тихонов Борис Николаевич и др. - Москва: Горячая линия-телеком, 2007. - 374 с.: ил. - (Учебное пособие). - ISBN 5-93517-338-7: 385-00. 21 3. Свешников, И.В. Технологии современных оптических сетей связи: учеб. пособие / И. В. Свешников, Л. В. Ковалевская. - Чита: ЗабГУ, 2014. - 130 с.: ил. - ISBN 978-5-9293-1245-8: 130-00. 5+е

5.1.2. Издания из ЭБС

1. 1. Метрология и электрорадиоизмерения в телекоммуникационных системах : Допущено УМО по образованию в области информационной безопасности в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальности "Информационная безопасность телекоммуникационных систем" / С. И. Боридько [и др.]; Боридько С.И.; Дементьев Н.В.; Тихонов Б.Н.; Ходжаев И.А. - Moscow : Горячая линия -Телеком, 2012. - . - Метрология и электрорадиоизмерения в телекоммуникационных системах [Электронный ресурс] : Учебное пособие / Под общей редакцией Б.Н. Тихонова. стереотип. M. Горячая линия Телеком, : http://www.studentlibrary.ru/book/ISBN9785991202459.html . - ISBN 978-5-9912-0245-9. 2. Метрология и электрорадиоизмерения в телекоммуникационных системах [Электронный ресурс]: Учебное пособие / Под общей редакцией Б.Н. Тихонова. - 2-е изд., стереотип. - М.: Горячая линия - Телеком, 2012. - http://www.studentlibrary.ru/book/ISBN9785991202459.html 3. 18 Метрология, стандартизация и сертификация [Электронный ресурс]: Учеб. для вузов / Я.М. Радкевич, А.Г. Схиртладзе, Б.И. Лактионов. - М. : Абрис, http://www.studentlibrary.ru/book/ISBN9785437200643.html

5.2. Дополнительная литература

5.2.1. Печатные издания

1. 1. Резникова, Наталья Петровна. Маркетинг в телекоммуникациях / Резникова Наталья Петровна. - 2-е изд, доп. и перераб. - Москва : Эко- Трендз, 2002. - 336с. : ил. - (Технологии электронных коммуникаций). - ISBN 5-88405-024-0 : 160-00. 2. Пескова, С.А. Сети и телекоммуникации : учеб. пособие / С. А. Пескова, А. В. Кузин, А. Н. Волков. - Москва : Академия, 2006. - 352с. - ISBN 5-7695-1695-X : 335-00.

5.2.2. Издания из ЭБС

1. 1. Проектирование и техническая эксплуатация цифровых телекоммуникационных

систем и сетей: учеб. пособие/ Алексеев Е. Б. [и др.]; под ред. В.Н. Гордиенко, М.С. Тверецкого. - Москва: Горячая линия-Телеком, 2008. - 392 с.: ил. - http://www.studentlibrary.ru/book/ISBN9785991202543.html

5.3. Базы данных, информационно-справочные и поисковые системы

6. Перечень программного обеспечения

Программное обеспечение общего назначения: ОС Microsoft Windows, Microsoft Office, ABBYY FineReader, ESET NOD32 Smart Security Business Edition, Foxit Reader, АИБС "МегаПро".

Программное обеспечение специального назначения:

7. Материально-техническое обеспечение дисциплины

Наименование помещений для проведения	Оснащенность специальных помещений и
учебных занятий и для самостоятельной	помещений для самостоятельной работы

работы обучающихся	
Учебные аудитории для проведения занятий лекционного типа	Состав оборудования и технических средств обучения указан в паспорте аудитории,
Учебные аудитории для проведения практических занятий	закрепленной расписанием по факультету
Учебные аудитории для проведения лабораторных занятий	
Учебные аудитории для промежуточной аттестации	

8. Методические рекомендации по организации изучения дисциплины

Лекции являются основным источником теоретического материала по дисциплине. Посещение и конспектирование лекций является обязательной составляющей успешного освоения дисциплины обучающимися.

Для эффективного освоения материала дисциплины необходимо выполнение следующих требований:

- обязательное посещение всех лекционных и практических занятий, способствующее системному овладению материалом курса;
- все вопросы соответствующих разделов и тем по дисциплине необходимо фиксировать (на любых носителях информации);
- обязательное выполнение домашних заданий является важнейшим требованием и условием формирования целостного и системного знания по дисциплине;
- обязательность личной активности каждого студента на всех занятиях по дисциплине;
- в случаях неясности каких-либо вопросов, обсуждаемых на занятиях, необходимо задать соответствующие вопросы преподавателю, а не оставлять их непонятыми;
- в случаях пропусков занятий по уважительным причинам студентам предоставляется право подготовки и представления заданий и ответов на вопросы изученного материала, с расчетом на помощь преподавателя в его усвоении;
- в случаях пропусков без уважительной причины студент обязан самостоятельно изучить соответствующий материал;
- необходимым условием является самостоятельность и инициативность студентов при контроле набора баллов по дисциплине для успешного прохождения промежуточной аттестации.

Порядок организации лабораторной работы студентов

Лабораторная работа студентов предполагает сознательной активной работы не только в лаборатории при сборке установки и проведении измерений, но и дома при подготовке к измерениям, обработке результатов и составления отчета.

Выполнение лабораторной работы есть определенная последовательность действий:

- подготовка к эксперименту;
- проведение измерений;
- обработка полученных результатов;
- формулировка выводов и написание отчета.

Для грамотного и быстрого их выполнения должна сложиться определенная система знаний и умений (ориентировочная основа действия), которая обеспечит правильное и

рациональное исполнение действия.

Поэтому выполнение каждой лабораторной работы необходимо начинать с изучения ее описания и приведения знаний в систему, а именно:

- ясно представить себе общую цель данной конкретной лабораторной работы и последовательность задач, решение которых приведет к достижению окончательной цели;
- знать основные особенности объекта исследования
- изучить и уметь объяснить физические основы используемых в работе методов измерения искомых величин;
- уметь нарисовать принципиальную схему используемой установки и знать назначение каждого из ее узлов;
- знать последовательность выполнения этапов лабораторной работы;
- иметь общее представление об ожидаемых результатах проводимого эксперимента и уметь выбрать метод, нужный для их математической обработки

Отчетст удента поработ е должен быть индивидуальным, составленным по установленной форме, и содержать следующие разделы: наименование работы; цель работы; индивидуальное задание; применяемая аппаратура; е е описание (система, класс, цена давления и т.д.); краткое изложение методики, схемы опытов; таблицы данных измерений; итог обработки результатов и расчетные формулы; графики; анализ

результатов и погрешностей; фрагмент конструкции соединения. Анализ результатов является важной частью отчета.

Порядок организации студентов на практическом занятии

Перед практическими занятиями студент должен повторить лекционный материал, ответив н а вопросы д л я самоконтроля п о необходимой теме, а также просмотреть рекомендации по решению типичных задач этой темы.

На практических занятиях обобщаются и систематизируются знания, полученные на лекционных занятиях и формируются умения решать типовые задачи. При решении студент должен уметь:

- выделять описываемое явление (объект), анализировать условие задачи;
- выполнять построение модели явления;
- формулировать выводы из модели;
- выявлять применения полученных знаний в профессиональной деятельности.

Н а практических занятиях студент приобретает учится собирать и анализировать информацию для формирования исходных данных для проектирования средств и

сетей связи.

Порядок организации самостоятельной работы студентов

Самостоятельная работа - индивидуальная учебная деятельность, осуществляемая без непосредственного руководства преподавателя, в ходе которой бакалавр активно воспринимает, осмысливает информацию, решает теоретические и практические задачи.

В процессе проведенной самостоятельной работы формируются компетенции Самостоятельная работа студентов предполагает:

- самостоятельный поиск, обработку (анализ, синтез, обобщение и систематизацию), адаптацию необходимой по дисциплине информации;
- выполнение заданий для самостоятельной работы;
- изучение и усвоение теоретического материала, представленного на лекционных занятиях и в соответствующих литературных источниках (рекомендуемая основная и дополнительная литература);
- самостоятельное изучение отдельных вопросов курса;
- подготовка к практическим и лабораторным занятиям, в соответствии с рекомендациями

преподавателя (выполнение конкретных заданий, соответствующие организационные действия и т.д.).

Самостоятельное выполнение контрольных и лабораторных работ является основным средством освоения теоретического материала курса и приобретения умений и навыков его практического применения, поскольку только применение знаний обеспечивает их глубокое понимание. Контроль за самостоятельной работой производится на практических занятиях.

Разработчик/группа разработ	чиков:	
Сергей Григорьевич Виблый		
Типовая программа утвер	ждена	
Согласована с выпускающей	кафедрой	
Заведующий кафедрой	1 . 1	
	20ı	Γ.