МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Забайкальский государственный университет» (ФГБОУ ВО «ЗабГУ»)

Ракультет естественных наук, математики и технологий Сафедра Физики	Ă
	УТВЕРЖДАЮ:
	Декан факультета
	Факультет естественных наук, математики и технологий
	Токарева Юлия Сергеевна
	«»20

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.15 Физика на 252 часа(ов), 7 зачетных(ые) единиц(ы)

для направления подготовки (специальности) 23.03.03 - Эксплуатация транспортнотехнологических машин и комплексов

составлена в соответствии с	ФГОС ВО, утвержденным прик	казом
Министерства образовани	я и науки Российской Федераци	то и
«»	20 г. №	

Профиль – Автомобили и автомобильное хозяйство (для набора 2021) Форма обучения: Заочная

1. Организационно-методический раздел

1.1 Цели и задачи дисциплины (модуля)

Цель изучения дисциплины:

Целью изучения дисциплины является формирование у студентов представлений, понятий и знаний о общих законах различных форм движения материи и различных физических явлений, а также ознакомление с теоретическими и экспериментальными методами изучения движения материи, явлений и законов сохранения.

Задачи изучения дисциплины:

Задачей изучения дисциплины является овладение студентами знаниями физических явлений, фундаментальных законов физики, уметь применять полученные знания для решения технических и технологических задач, а также выработать способность к абстрактному мышлению, анализу и синтезу при использовании знаний в производственных, технологических и инженерных исследований в соответствии с специализацией.

1.2. Место дисциплины (модуля) в структуре ОП

Место дисциплины (модуля) в структуре ОП Для успешного освоения дисциплины студент должен иметь базовую подготовку по математике, химии и физике в объеме программы средней школы, а также по разделам высшей математики: векторная алгебра, дифференциальное и интегральное исчисление, дифференциальные уравнения, теория вероятности. Дисциплина «физика» входит в блок Б1.,базовой программы бакалавриата в соответствии с ФГОС 3++ и относится к базовым дисциплинам, обязательным для изучения студентам, общающихся по направлению "Эксплуатация транспортно-технологических машин и комплексов". Дисциплина изучается на 1 курсе, в 1 и 2 семестрах.

1.3. Объем дисциплины (модуля) с указанием трудоемкости всех видов учебной работы

Общая трудоемкость дисциплины (модуля) составляет 7 зачетных(ые) единиц(ы), 252 часов.

Виды занятий	Семестр 1	Семестр 2	Всего часов
Общая трудоемкость			252
Аудиторные занятия, в т.ч.	12	12	24
Лекционные (ЛК)	4	4	8
Практические (семинарские) (ПЗ, C3)	4	4	8
Лабораторные (ЛР)	4	4	8

Самостоятельная работа студентов (СРС)	96	96	192
Форма промежуточной аттестации в семестре	Зачет	Экзамен	36
Курсовая работа (курсовой проект) (КР, КП)			

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые рез	вультаты освоения образовательной программы	Планируемые результаты обучения по дисциплине			
Код и наименование компетенции	Индикаторы достижения компетенции, формируемые в рамках дисциплины	Дескрипторы: знания, умения, навыки и (или) опыт деятельности			
ОПК-1	Знает основные законы математических и естественных наук, необходимых для решения типовых задач профессиональной деятельности Использует знания основных законов математических и естественных наук для решения стандартных задач в области эксплуатации транспортных и транспортно-технологических машин	Знать: 1. основные направления практического применения изучаемых теорий и законов физики; 2. знать основные разделы физики и сущности основных физических явлений, изучаемых в каждом разделе, примеры их проявлений в природе и технике; 3. основные физические теории и границы их применимости, а также круга явлений и соответствующих им законов, которые могут быть объяснены на основе этих теорий и основные направления практического применения изучаемых теорий и законов; 4. простейшие модели и			

основные понятий, используемых при изучении разных разделов физики; единиц измерения физических величин в системе СИ; 5. методы математического анализа и моделирования, теоретического и экспериментального исследования при 3 окружающей среды и обеспечением безопасности человека; изучении разнообразных явлений.

Уметь: 1. уметь находить, систематизировать И анализировать новую информацию, относящуюся научной, технической или технологической проблеме, связанной с каким-либо физическим явлением, подготовить реферат или доклад по выбранной теме; 2. анализировать изменение параметров, характеризующих рассматриваемое явление, при изменении условий протекания умение; 3. составлять математическую модель задачной ситуации (т.е. выбирать нужные законы и согласовывать их с условиями задачи); выстраивать правильную логическую цепочку умозаключений при обосновании хода решения; 4. выбирать и применять базовые физические законы для

профессиональной деятельности;

5.

обосновывать выбор метода решения задачи, строить математическую модель задачной ситуации, анализировать полученное решение и оценивать правдоподобность Владеть: 1. навыками исследования функциональных зависимостей с использованием методов дифференциального И интегрального 2. исчисления; навыками использование физических законов для решения профессиональных задач; навыками выявления классификации процессов протекающих на объектах профессиональной деятельности; вычислительными навыками, в том числе громоздких (табличных) при вычислениях и графиков при построении использованием стандартных компьютерных программ; 5. обработки навыками экспериментальных результатов

3. Содержание дисциплины

3.1. Разделы дисциплины и виды занятий

3.1 Структура дисциплины для заочной формы обучения

Модуль	Номер раздела	Наименование раздела	Темы раздела	Всего часов	•	(итор аняті		C P
					Л К	П 3 (С	Л Р	С

						3)	L	
1	1.1	Физические основы механики.	Кинематика и динамика поступательного и вращательного движений.	12	4	4	4	0
2	2.1	Основы квантовой механики.	Корпускулярноволновой дуализм, энергия фотона, уравнение Шредингера. Квантовые числа, электронные уровни и подуровни атома. Состав атомного ядра, изотопы. Радиоактивность, ядерные реакции, деление и синтез ядер.	12	4	4	4	0
3	3.1	Элементы релятивисткой механики.	Принцип относительности Галилея. Принцип относительности Эйнштейна. Преобразования Лоренца.	6	0	0	0	6
4	4.1	Гармонически е колебания и волны.	Уравнения гармонических колебаний. Параметры гармоничеких колебаний. Дифференциальное уравнение гармонического осциллятора. Сложение колебаний одного направления и сложение колебаний в перпендикулярных направлениях. Фигуры Лиссажу. Кинематика и энергия колебательного движения. Затухающие колебания, декремент затухания. Вынужденные колебания, резонанс. Уравнение бегущей	36	0	0	0	36

			волны. Параметры бегущей волны. Интерференция волн, условия максимума и минимума. Образование стоячей волны, узлы и пучности, амплитуда стоячей волны. Уравнение волн в упругих средах. Сжатие, сдвиг и модуль Юнга. Энергия волны, плотность энергии волны. Затухание волн. Эффект Допплера.					
5	5.1	Молекулярная физика.	Параметры идеального газа. Объединённый газовый закон. Моль, число Авогадро и закон Авогадро. Универсальная газовая постоянная, постоянная Больцмана. Закон Дальтона. Уравнение Менделеева-Клапейрона для идеального газа. Импульс и кинетическая энергия молекул газа. Первый закон термодинамики. Внутренняя энергия газа и степень свободы молекулы. Теплоёмкость вещества, теплоёмкости газа при постоянных давлении и объёме. Процессы в газах, изохорный, изобарный и изотермический процесс. Адиабатный процесс. Первый закон термодинамики и работа для каждого процесса. Энтропия, второй закон термодинамики. Основное уравнение термодинамики с учётом	36	0	0	0	36

			энтропии. Изменение энтропии для изохорного, изобарного, изобарного, изотермического и адиабатного процессов. Вероятность состояния. Круговые циклы. Цикл Карно, КПД цикла Карно. Термодинамические потенциалы.					
6	6.1	Свойства жидкостей.	Поверхностное натяжение. Сила и работа поверхностного натяжения. Давление Лапласа под изогнутой поверхностью. Явление смачивания. Равновесие капли. Капиллярные эффекты. Формула Жюрена для капиллярного эффекта.	10	0	0	0	10
7	7.1	Электрическо е и магнитное поля. Элементы теории поля. постоянный и переменный электрические токи.	Электростатика, закон Кулона, напряжённость электрического поля. Суперпозиция полей, диполь. Линейная, поверхностная и объёмная плотности зарядов. Теорема Остроградского-Гаусса. Работа электрического поля, потенциал электрического поля и разность потенциалов. Электроёмкость, конденсатор, ёмкость конденсатора. Последовательное и параллельное соединения конденсаторов. Поляризация диэлектриков. Энергия полярной молекулы в электрическом поле. Теорема Остроградского-Гаусса в диэлектриках,	38	0	0	0	38

			электрическая индукция. Энергия электрического поля. Постоянный электрический ток. Электродвижущая сила. Закон Ома. Напряжение, сила тока и сопротивление проводника. Закон Джоуля-Ленца. Магнитное поле. Источники магнитного поля. Закон Био-Савара-Лапласа. Напряжённость и индукция магнитного поля. Вещество в магнитном поле, парамагнетики, диамагнетики и ферромагнетики. Энергия магнитного поля. Электромагнитная индукция. Поток магнитного поля. Закон Фарадея, правило Ленца. Сила Ампера. Индуктивность катушки. Переменный электрический ток. ЭДС самоиндукции. Резистор, конденсатор и катушка индуктивности в цепях переменного тока.					
8	8.1	Электромагни тное поле.	Электромагнитная теория Максвелла. Система уравнений Максвелла при наличии токов проводимости и заряженных тел. Решение системы уравнений Максвелла без токов проводимости и заряженных тел. Электромагнитная волна. Параметры электромагнитной	20	0	0	0	20

			волны. Скорость света. Поляризация электромагнитной волны, закон Малюса. Степень поляризации.					
9	9.1	Геометрическ ая и волновая оптика.	Законы геометрической оптики. Показатель преломления, абсолютный и относительный. Линзы, фокусное расстояние. Физический смысл показателя преломления. Дисперсия, электронная теория Лоренца. Дифракция волн. Принцип Гюйгенса-Френеля. Интерференция электромагнитных волн. Опыт Юнга, кольца Ньютона. Дифракция волн на узкой щели. Дифракция Френеля на круглом отверстии. Зоны Френеля. Дифракционная решетка.	20	0	0	0	20
10	10.1	Тепловое излучение. Фотоэффект.	Тепловое излучение. Энергетическая светимость, лучеиспускательная и поглощательная способности. Закон Рэлея-Джинса. Закон Стефана-Больцмана для тела произвольной черноты. Абсолютно черное тело. Закон Вина. Фотоэффект. Внешний и внутренний фотоэффекты. Законы Столетова. Уравнение Эйнштейна для фотоэффекта. Красная граница фотоэффекта.	20	0	0	0	20

11	11.1	Зонная теория кристаллов.	Проводники, диэлектрики и полупроводники. Зависимость сопротивления полупроводника от температуры.	6	0	0	0	6
			Электронная и дырочная проводимости полупроводника.					
		Итого		216	8	8	8	192

3.2. Содержание разделов дисциплины

3.2.1. Лекционные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Кинематика и динамика пост упательного и вращательного движений.	Перемещение, скорость и ускорение материальной точки. Импульс тела, закон сохранения импульса, упругий и неупругий удары. Второй закон Ньютона для поступательного движения. Работа, мощность и энергии поступательного движения.	2
	1.1	Кинематика и динамика пост упательного и вращательног о движений.	Угол поворота, угловая скорость и угловое ускорение вращающегося тела. Нормальное, тангенциальное и полное ускорения. Момент инерции, момент импульса и закон сохранения момента импульса. Момент силы. Второй закон Ньютона для вращательного движения. Работа, мощность и энергии вращательного движения.	2
2	2.1	Корпускулярн о-волновой дуализм, энергия фотона, уравнение Шредингера. Квантовые числа, электронные уровни и	Корпускулярно-волновой дуализм, длина волны Д'Бройля. Квантование физических величин, энергия фотона. Квантовые числа, электронные облака. Частица в потенциальной яме. волновое уравнение Шредингера.	2

		подуровни атома. Состав атомного ядра, изотопы. Радиоактивно сть, ядерные реакции, деление и синтез ядер.		
	2.1	Корпускулярн о-волновой дуализм, энергия фотона, уравнение Шредингера. Квантовые числа, электронные уровни и подуровни атома. Состав атомного ядра, изотопы. Радиоактивно сть, ядерные реакции, деление и синтез ядер.	Состав атомного ядра, ядерные силы, изотопы. Радиоактивность, альфа-, бета- и гамма-радиоактивности, закон радиоактивного распада. Ядерные реакции, нейтронный захват. Деление тяжелых ядер, ядерный реактор. Синтез ядер, синтез ядер гелия из изотопов водорода.	2
11				

3.2.2. Практические занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Кинематика и динамика пост упательного и вращательног о движений.	Перемещение, скорость и ускорение материальной точки. Импульс тела, закон сохранения импульса, упругий и неупругий удары. Второй закон Ньютона для поступательного движения. Работа, мощность и энергии поступательного движения. Решение задач.	2
	1.1	Кинематика и динамика пост упательного и	Угол поворота, угловая скорость и угловое ускорение вращающегося тела. Нормальное, тангенциальное и	2

		вращательног о движений.	полное ускорения. Момент инерции, момент импульса и закон сохранения момента импульса. Момент силы. Второй закон Ньютона для вращательного движения. Работа, мощность и энергии вращательного движения.	
2	2.1	Корпускулярн о-волновой дуализм, энергия фотона, уравнение Шредингера. Квантовые числа, электронные уровни и подуровни атома. Состав атомного ядра, изотопы. Радиоактивно сть, ядерные реакции, деление и синтез ядер.	Радиоактивность и закон радиоактивного распада. Решение задач.	2
	2.1	Корпускулярн о-волновой дуализм, энергия фотона, уравнение Шредингера. Квантовые числа, электронные уровни и подуровни атома. Состав атомного ядра, изотопы. Радиоактивно сть, ядерные реакции, деление и синтез ядер.	Ядерные реакции, деление и синтез ядер.	2

3.2.3. Лабораторные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Кинематика и динамика пост упательного и вращательног о движений.	Изучение основного закона динамики для вращательного движения на маятнике Обербека. Лабораторная работа.	2
	1.1	Кинематика и динамика пост упательного и вращательног о движений.	Определение средней силы сопротивления грунта забивке сваи. Лабораторная работа.	2
2	2.1	Корпускулярн о-волновой дуализм, энергия фотона, уравнение Шредингера. Квантовые числа, электронные уровни и подуровни атома. Состав атомного ядра, изотопы. Радиоактивно сть, ядерные реакции, деление и синтез ядер.	Определение длины световой волны с помощью дифракционной решетки. Лабораторная работа	2
	2.1	Корпускулярн о-волновой дуализм, энергия фотона, уравнение Шредингера. Квантовые числа, электронные	Изучение спектра атома водорода. Лабораторная работа.	2

	уровни и
	подуровни
	атома. Состав
	атомного
	ядра, изотопы.
	Радиоактивно
	сть, ядерные
	реакции,
	деление и
	синтез ядер.
11	
11	

3.3. Содержание материалов, выносимых на самостоятельное изучение

Модуль	Номер раздела	Содержание материалов, выносимого на самостоятельное изучение	Виды самостоятельной деятельности	Трудоемкость (в часах)
3	3.1	Принцип относительности Галилея. Принцип относительности Эйнштейна. Преобразования Лоренца.	Конспект	6
4	4.1	Уравнения гармонических колебаний. Параметры гармоничеких колебаний. Дифференциальное уравнение гармонического осциллятора. Сложение колебаний одного направления и сложение колебаний в перпендикулярных направлениях. Фигуры Лиссажу. Кинематика и энергия колебательного движения. Затухающие колебания, декремент затухания. Вынужденные колебания, резонанс. Уравнение бегущей волны. Параметры	Конспект	36

	бегущей волны. Интерференция волн, условия максимума и минимума. Образование стоячей волны, узлы и пучности, амплитуда стоячей волны. Уравнение волн в упругих средах. Сжатие, сдвиг и модуль Юнга. Энергия волны, плотность энергии волны. Затухание волн. Эффект Допплера.		
5	Тараметры идеального газа. Объединённый газовый закон. Моль, число Авогадро и закон Авогадро. Универсальная газовая постоянная, постоянная Больцмана. Закон Дальтона. Уравнение Менделеева-Клапейрона для идеального газа. Импульс и кинетическая энергия молекул газа. Первый закон термодинамики. Внутренняя энергия газа, работа газа и степень свободы молекулы. Теплоёмкость вещества, теплоёмкости газа при постоянных давлении и объёме. Процессы в газах, изохорный, изобарный и изотермический процессы. Адиабатный процесс. Первый закон термодинамики и работа для каждого процесса. Энтропия, второй закон термодинамики. Основное уравнение термодинамики с учётом энтропии. Изменение энтропии для	Конспект	36

		изохорного, изобарного, изотермического и адиабатного процессов. Вероятность состояния. Круговые циклы. Цикла Карно, КПД цикла Карно. Термодинамические потенциалы.		
6	6.1	Поверхностное натяжение. Сила и работа поверхностного натяжения. Давление Лапласа под изогнутой поверхностью. Явление смачивания. Равновесие капли. Капиллярные эффекты. Формула Жюрена для капиллярного эффекта.	Конспект	10
7	7.1	Электростатика, закон Кулона, напряжённость электрического поля. Суперпозиция полей, диполь. Линейная, поверхностная и объёмная плотности зарядов. Теорема Остроградского-Гаусса. Работа электрического поля, потенциал электрического поля и разность потенциалов. Электроёмкость, конденсатора. Последовательное и параллельное соединения конденсаторов. Поляризация диэлектриков. Энергия полярной молекулы в электрическом поле. Теорема Остроградского-Гаусса в диэлектриках, электрическая индукция. Энергия электрическом поля.	Конспект	38

		Постоянный электрический ток. Электродвижущая сила. Закон Ома. Напряжение, сила тока и сопротивление проводника. Закон Джоуля-Ленца. Магнитное поле. Источники магнитного поля. Закон Био-Савара-Лапласа. Напряжённость и индукция магнитного поля. Вещество в магнитном поле, парамагнетики, диамагнетики и ферромагнетики. Энергия магнитного поля. Электромагнитная индукция. Поток магнитного поля. Закон Фарадея, правило Ленца. Сила Ампера. Индуктивность катушки. Переменный электрический ток. ЭДС самоиндукции. Резистор, конденсатор и катушка индуктивности в цепях переменного тока.		
8	8.1	Электромагнитная теория Максвелла. Система уравнений Максвелла при наличии токов проводимости и заряженных тел. Решение системы уравнений Максвелла без токов проводимости и заряженных тел. Электромагнитная волна. Параметры электромагнитной волны. Скорость света. Поляризация электромагнитной волны, закон Малюса. Степень	Конспект	20

		поляризации.		
9	9.1	Законы геометрической оптики. Показатель преломления, абсолютный и относительный. Линзы, фокусное расстояние. Физический смысл показателя преломления. Дисперсия, электронная теория Лоренца. Дифракция волн. Принцип Гюйгенса-Френеля. Интерференция электромагнитных волн. Опыт Юнга, кольца Ньютона. Дифракция волн на узкой щели. Дифракция Френеля на круглом отверстии. Зоны Френеля. Дифракционная решетка.	Конспект	20
10	10.1	Тепловое излучение. Энергетическая светимость, лучеиспускательная и поглощательная способности. Закон Рэлея-Джинса. Закон Стефана-Больцмана для тела произвольной черноты. Абсолютно черное тело. Закон Вина. Фотоэффект. Внешний и внутренний фотоэффекты. Законы Столетова. Уравнение Эйнштейна для фотоэффекта. Красная граница фотоэффекта.	Конспект	20
11	11.1	Проводники, диэлектрики и полупроводники. Зависимость сопротивления полупроводника от температуры.	Конспект	6

Электронная и дырочная	
проводимости	
полупроводника.	

4. Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств текущего контроля и промежуточной аттестации по итогам освоения дисциплины представлен в приложении.

Фонд оценочных средств

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

5.1.1. Печатные издания

1. 1.1. Савельев, Игорь Владимирович. Курс физики: В 3 т. Т.1: Механика. Молекулярная физика / Савельев Игорь Владимирович. - Москва: Наука, 1989. - 352 с.: ил. ISBN — 5-02-014430-4(Т.1). Количество экземпляров: 158. 2. Савельев, Игорь Владимирович. Курс общей физики. Т. 2: Электричество и магнетизм. Волны. Оптика / Савельев Игорь Владимирович. - 3-е изд., испр. - Москва: Наука. Гл. ред. физ.-мат. лит., 1988. — 496 с.: ил. — 1-20. Количество экземпляров: 18. 3. Савельев, И.В. Курс общей физики: Т. 3: Оптика. Атомная физика. Физика атомного ядра и элементарных частиц / И. В. Савельев. - 4-е изд., стер. - Москва: Наука. Гл. ред. физ.-мат. лит., 1987. — 528 с.: ил. — 0-85. Количество экземпляров: 46.

5.1.2. Издания из ЭБС

1. 1.1. Родионов, Василий Николаевич. Физика: Учебное пособие / Родионов Василий Николаевич; Родионов В.Н. - 2-е изд. - М.: Издательство Юрайт, 2017. - 295. - (Университеты России). - ISBN 978-5-534-01280-4. Количество экземпляров: 0 + е. 2. Ильин, Вадим Алексеевич. Физика: Учебник и практикум / Ильин Вадим Алексеевич; 14 Ильин В.А., Бахтина Е.Ю., Виноградова Н.Б., Самойленко П.И. - М.: Издательство Юрайт, 2017. - 399. - (Бакалавр. Прикладной курс). - ISBN 978-5-534-01411-2. Количество экземпляров: 0 + е.

5.2. Дополнительная литература

5.2.1. Печатные издания

1. 1.1. Верхотуров, Анатолий Русланович. Физика: учеб. пособие / Верхотуров Анатолий Русланович, Шамонин Виктор Александрович. - Чита: ЧитГУ, 2011. - 176 с. - ISBN 978-5-9293-0600-6. Количество экземпляров: 169. 2. Верхотуров, Анатолий Русланович. Физика: учеб. пособие / Верхотуров Анатолий Русланович, Шамонин Виктор Александрович, Белкин Сергей Юрьевич. - Чита: ЧитГУ, 2010. - 243 с. - ISBN 978-5-9293-0646-4. Количество экземпляров: 164. 3. Трофимова, Т. И. Курс физики: учеб.

пособие / Т. И. Трофимова. - 2-е изд., испр. и доп. - Москва : Высш. шк., 1990. – 478 с. – ISBN 5-06-001540-8. Количество экземпляров: 80. 4. Савченко, Н.Д. Основы физики : учеб. пособие. Ч. 1 : Механика. Электродинамика. Термодинамика / Н. Д. Савченко, Т. В. Кузьмина, Т. В. Рахлецова. – Чита: ЗабГУ, 2015. - 233 с. - ISBN 978-5-9293-1231-1. Количество экземпляров: 50 + е. 5. Основы физики : учеб. пособие. Ч. II : Физика колебаний и волн. Основы квантовой механики. Физика атомного ядра и элементарных частиц / Н.Д. Савченко [и др.]. - Чита : ЗабГУ, 2015. - 267 с. - ISBN 978-5-9293-1460-5. - ISBN 978-5-9293-1162-8. Количество экземпляров: 10 + е.

5.2.2. Издания из ЭБС

1. 1.1. Трофимова Т.И. Руководство к решению задач по физике. 3-е изд., испр. и доп. Учебное пособие для прикладного бакалавриата. Трофимова Т.И., -М.: Издательство Юрайт, 2017.-265с.- https://www.biblio-online.ru/viewer/1B164B8C-5D56-49A5-AE9BE2C23FF6479A.

5.3. Базы данных, информационно-справочные и поисковые системы

Название	Ссылка
Информационная система "Единое окно доступа к образовательным ресурсам"	http://window.edu.ru/
Научная Электронная Библиотека	http://www.e-library.ru/
Электронные версии учебников, пособий, методических разработок, указаний и рекомендаций по всем видам учебной работы, предусмотренных вузовской рабочей программой, находящиеся в свободном доступе для студентов, обучающихся в вузе, на внутри сетевом сервере	http://www.zabgu.ru/

6. Перечень программного обеспечения

Программное обеспечение общего назначения: ОС Microsoft Windows, Microsoft Office, ABBYY FineReader, ESET NOD32 Smart Security Business Edition, Foxit Reader, АИБС "МегаПро".

Программное обеспечение специального назначения:

1) Apache OpenOffice

7. Материально-техническое обеспечение дисциплины

Наименование помещений для проведения	Оснащенность специальных помещений и
	помещений для самостоятельной работы
работы обучающихся	

Учебные аудитории для проведения занятий лекционного типа	Состав оборудования и технических средств обучения указан в паспорте аудитории закрепленной расписанием по факультету	
Учебные аудитории для проведения практических занятий		
Учебные аудитории для проведения лабораторных занятий		
Учебные аудитории для промежуточной аттестации		
Учебные аудитории для проведения групповых и индивидуальных консультаций	Состав оборудования и технических средств обучения указан в паспорте аудитории,	
Учебные аудитории для текущей аттестации	закрепленной расписанием по кафедре	

8. Методические рекомендации по организации изучения дисциплины

Лекции являются основным источником теоретического материала по дисциплине «Физика». Посещение и конспектирование лекций является обязательной составляющей успешного освоения дисциплины обучающимися.

Для эффективного освоения материала дисциплины «Физика» необходимо выполнение следующих требований:

- обязательное посещение всех лекционных и практических занятий, способствующее системному овладению материалом курса;
- все вопросы соответствующих разделов и тем по дисциплине необходимо фиксировать (на любых носителях информации);
- обязательное выполнение домашних заданий является важнейшим требованием и условием формирования целостного и системного знания по дисциплине;
- обязательность личной активности каждого студента на всех занятиях по дисциплине;
- в случаях неясности каких-либо вопросов, обсуждаемых на занятиях, необходимо задать соответствующие вопросы преподавателю, а не оставлять их непонятыми;
- в случаях пропусков занятий по уважительным причинам студентам предоставляется право подготовки и представления заданий и ответов на вопросы изученного мате-риала, с расчетом на помощь преподавателя в его усвоении;
- в случаях пропусков без уважительной причины студент обязан самостоятельно изучить соответствующий материал;
- необходимым условием является самостоятельность и инициативность студентов при контроле набора баллов по дисциплине для успешного прохождения промежуточной аттестации.

Порядок организации самостоятельной работы студентов

Самостоятельная работа студентов предполагает:

- самостоятельный поиск, обработку (анализ, синтез, обобщение и систематизацию), адаптацию необходимой по дисциплине информации;
- выполнение заданий для самостоятельной работы;
- изучение и усвоение теоретического материала, представленного на лекционных занятиях и в соответствующих литературных источниках (рекомендуемая основная и дополнительная литература);
- самостоятельное изучение отдельных вопросов курса;

- подготовка к практическим и лабораторным занятиям, в соответствии с рекомендациями преподавателя (выполнение конкретных заданий, соответствующие организационные действия и т.д.).

Порядок организации лабораторной работы студентов

Лабораторная работа студентов предполагает сознательной активной работы не только в лаборатории при сборке установки и проведении измерений, но и дома при под-готовке к измерениям, обработке результатов и составления отчета.

Выполнение лабораторной работы есть определенная последовательность действий:

- подготовка к эксперименту;
- проведение измерений;
- обработка полученных результатов;
- формулировка выводов и написание отчета.

Для грамотного и быстрого их выполнения должна сложиться определенная система знаний и умений (ориентировочная основа действия), которая обеспечит правильное и рациональное исполнение действия.

Поэтому выполнение каждой лабораторной работы по физике необходимо начинать с изучения ее описания и приведения знаний в систему, а именно:

- ясно представить себе общую цель данной конкретной лабораторной работы и последовательность задач, решение которых приведет к достижению окончательной цели;
- знать, какое физическое явление изучается в данной работе, какими зависимостям связаны описывающие его величины;
- знать основные особенности объекта исследования
- изучить и уметь объяснить физические основы используемых в работе методов измерения искомых величин;
- уметь нарисовать принципиальную схему используемой установки и знать назначение каждого из ее узлов;
- знать последовательность выполнения этапов лабораторной работы;
- иметь общее представление об ожидаемых результатах проводимого эксперимента и уметь выбрать метод, нужный для их математической обработки

Порядок организации студентов на практическом занятии

На практических занятиях обобщаются и систематизируются знания полученные на лекционных занятиях и формируются умения решать типовые задачи. При решении задач по физике студент должен уметь:

- выделять описываемое явление (объект), анализировать условие задачи;
- выполнять построение модели явления;
- формулировать выводы из модели;
- выявлять применения полученных знаний в профессиональной деятельности.

Разработчик/группа разработч	ников:	
Юрий Андреевич Бочаров		
Типовая программа утверх	кдена	
Согласована с выпускающей к	афедрой	
Заведующий кафедрой		
«»	20	Γ.