МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Забайкальский государственный университет» (ФГБОУ ВО «ЗабГУ»)

Кафедра Математики и информатики
УТВЕРЖДАЮ:
Декан факультета
Факультет естественных наук, математики и

Факультет естественных наук, математики и технологий

Токарева Юлия Сергеевна

технологий

«____»____20____ г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.08 Основы микроэлектроники на 72 часа(ов), 2 зачетных(ые) единиц(ы) для направления подготовки (специальности) 01.03.02 - Прикладная математика и информатика

составлена в соответс	твии с ФГОС ВО	, утвержденным приказом
Министерства образ	вования и науки Р	Российской Федерации от
« »	20	г. №

Профиль – Исследование операций и системный анализ (для набора 2021) Форма обучения: Очная

1. Организационно-методический раздел

1.1 Цели и задачи дисциплины (модуля)

Цель изучения дисциплины:

готовность к проектированию электронных устройств на основе математических моделей микроэлектроники

Задачи изучения дисциплины:

освоение теоретических основ микроэлектроники и схемотехники освоение учебного проектирования электронных устройств

1.2. Место дисциплины (модуля) в структуре ОП

Б1.В.08

1.3. Объем дисциплины (модуля) с указанием трудоемкости всех видов учебной работы

Общая трудоемкость дисциплины (модуля) составляет 2 зачетных(ые) единиц(ы), 72 часов.

Виды занятий	Семестр 6	Всего часов
Общая трудоемкость		72
Аудиторные занятия, в т.ч.	32	32
Лекционные (ЛК)	16	16
Практические (семинарские) (ПЗ, СЗ)	0	0
Лабораторные (ЛР)	16	16
Самостоятельная работа студентов (СРС)	40	40
Форма промежуточной аттестации в семестре	Зачет	0
Курсовая работа (курсовой проект) (КР, КП)		

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения образовательной	Планируемые результаты

	программы	обучения по дисциплине		
Код и наименование компетенции	Индикаторы достижения компетенции, формируемые в рамках дисциплины	Дескрипторы: знания, умения, навыки и (или) опыт деятельности		
ОПК-2	ОПК-2	Знать: основы микроэлектроники Уметь: использовать и адаптировать методы моделирования электронных устройств Владеть: методами моделирования электронных устройств		
ПК-2	ПК-2	Знать: методы моделирования электронных устройств Уметь: использовать методы моделирования электронных устройств Владеть: методами моделирования электронных устройств		

3. Содержание дисциплины

3.1. Разделы дисциплины и виды занятий

3.1 Структура дисциплины для очной формы обучения

Модуль	Номер раздела	Наименование раздела	Темы раздела	Всего часов	_	штор аняті		C P C
					Л К	П 3 (С 3)	Л Р	
1	1.1	Модели элементов электрических цепей	Моделирование резистивных элементов. Моделирование реактивных элементов цепей. Микросхемы.	18	4	0	4	10
2	2.1	Учебное прое ктирование цепей смещения	Моделирование делителей напряжения. Учебное проектирование	18	4	0	4	10

			выпрямителей и стабилизаторов напряжения. Методы временного и частотного анализа при моделировании реактивных цепей.					
3	3.1	Учебное прое ктирование усилителей и генераторов э лектромагнит ных колебаний	Учебное проектирование транзисторных усилителей. Учебное проектирование усилителей и устройств на операционных дифференциальных усилителях. Учебное проектирование низкочастотных и высокочастотных генераторов.	26	6	0	6	14
4	4.1	Учебное прое ктирование радиопередач и. Учебное пр оектирование радиоприёмни ков.	Моделирование сигналов. Учебное проектирование радиопередатчиков. Учебное проектирование радиоприёмников.	10	2	0	2	6
		Итого		72	16	0	16	40

3.2. Содержание разделов дисциплины

3.2.1. Лекционные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Моделирован ие резистивных элементов. Мо делирование источников эл ектропитания. Моделирован ие реактивных элементов. Мо делирование	Основные параметры: ток, напряжение. Модель линейного резистора. Модели нелинейных резисторов и резистивных элементов: диодов, транзисторов. Моделирование реактивных элементов: конденсаторов, индуктивных катушек. Моделирование схемотехнических решений. Микросхемы.	4

		микросхем.		
2	2.1	Моделирован ие цепи: схемотехника, графические методы анализа . Мод елирование делителей напряжения. Моделирован ие зарядки аккумулятора. Учебное прое ктирование выпрямителей и стабилизаторо в напряжения. Методы временного и частотного анализа при моделировани и реактивных цепей.	1. Моделирование цепи: схемотехника, графические методы анализа (метод опрокинутой характеристики, метод эквивалентного источника). Моделирование делителей напряжения. Моделирование зарядки аккумулятора. 2. Учебное проектирование выпрямителей и стабилизаторов напряжения. Методы временного и частотного анализа при моделировании реактивных цепей.	4
3	3.1	Учебное прое ктирование транзисторны х усилителей на биполярных и полевых транзисторах. 2. Учебное пр оектирование усилителей и устройств на операционных дифференциа льных усилителях. 3. Учебное прое ктирование ни зкочастотных (RC) и высоко частотных (LC)	Учебное проектирование транзисторных усилителей на биполярных транзисторах, включённых по схеме с общим эмиттером, с общим коллектором. Усилители на полевых транзисторах. 2. Учебное проектирование усилителей и устройств на операционных дифференциальных усилителях. 3. Учебное проектирование низкочастотных (RC) и высокочастотных (LC) генераторов.	6

		генераторов.		
4	4.1	Моделирован ие сигналов. Учебное прое ктирование ра диопередатчи ков. Учебное проектирован ие радиоприё мников.	Моделирование сигналов. Моделирование модуляции звукового сигнала. Учебное проектирование радиопередатчиков. Моделирование демодуляции звукового сигнала. Учебное проектирование радиоприёмников.	2

3.2.2. Практические занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)

3.2.3. Лабораторные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Техника безопасности. Изучение работы с измерительно й аппаратурой. Модель линейного резистора. Модели нелинейных резисторов и резистивных элементов: диодов, транзисторов. Моделирован ие реактивных элементов: конденсаторов , индуктивных катушек. Моделирование сх	1. Изучение работы с измерительной аппаратурой и источниками электропитания. Измерения основных параметров в электрических цепях: ток, напряжение. Исследование модели линейного резистора, модели нелинейных резисторов и резистивных элементов: диодов, транзисторов. Условные графические обозначения элементов электрических цепей. 2. Изучение работы с измерительной аппаратурой и источниками сигналов. Изучение работы с осциллографами. Изучение моделей реактивных элементов: конденсаторов, индуктивных катушек.	(в часах)
		емотехническ		

		их решений. Микросхемы.		
2	2.1	1. Моделирова ние цепи: схемотехника, графические методы анализа. Моде лирование делителей напряжения. Моделирован ие зарядки аккумулятора. 2. Учебное пр оектирование выпрямителей и стабилизаторо в напряжения.	1. Моделирование делителей напряжения. Моделирование зарядки аккумулятора. 2. Учебное проектирование выпрямителей и стабилизаторов напряжения.	4
3	3.1	1. Учебное пр оектирование транзисторны х усилителей на биполярных транзисторах, включённых по схеме с общим эмиттером, с общим коллектором. 2. Учебное пр оектирование усилителей и устройств на операционных дифференциа льных усилителях. 3. Учебное прое ктирование ни зкочастотных (RC) и высоко частотных (LC) генераторов.	1. Учебное проектирование транзисторных усилителей на биполярных транзисторах, включённых по схеме с общим эмиттером. 2. Учебное проектирование усилителей и устройств на операционных дифференциальных усилителях. 3. Учебное проектирование низкочастотных генераторов.	6

4	4.1	Учебное прое	Учебное проектирование	2
		ктирование	модулятора. Учебное	
		детекторной	проектирование демодулятора	
		секции радиоп	радиоприёмника.	
		риёмника.		
		Учебное прое		
		ктирование ра		
		диоприёмнико		
		В.		

3.3. Содержание материалов, выносимых на самостоятельное изучение

Модуль	Номер раздела	Содержание материалов, выносимого на самостоятельное изучение	Виды самостоятельной деятельности	Трудоемкость (в часах)

4. Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств текущего контроля и промежуточной аттестации по итогам освоения дисциплины представлен в приложении.

Фонд оценочных средств

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

5.1.1. Печатные издания

1. 1. Венславский В.Б. Учебное проектирование электронных устройств: учеб. пособие // В.Б. Венславский; Забайкал. гос. ун-т. — Чита: ЗабГУ, 2015. — 182 с. МедаРго/Венславский/.pdf Электронный документ (тип: pdf, размер: 6906 Кб), 2. Венславский В.Б. Моделирование электронных систем источник-приёмник: монография. — Чита: Забайкал. гос. пед. ун-т. 2012. 139 с. 3. Кобыльский В.А. Электротехника и электроника: уч. пособие. Чита: ЗабГУ, 2015. — 167 с. Электронный документ (MegaPro .pdf)

5.1.2. Издания из ЭБС

1. 1. Новожилов, Олег Петрович. Электроника и схемотехника в 2 ч. Часть 1 : Учебник / Новожилов Олег Петрович; Новожилов О.П. - М. : Издательство Юрайт, 2017. - 382. - (Бакалавр. Академический курс). - ISBN 978-5-534-03513-1. - ISBN 978-5-534-03514-8 : 115.48. 2. Перепелкин, Д.А. Схемотехника усилительных устройств [Электронный ресурс] : Учебное пособие для вузов / Перепелкин Д.А. - М. : Горячая линия - Телеком, 2013. -

5.2. Дополнительная литература

5.2.1. Печатные издания

1. 1. Венславский, В.Б. Введение в учебное проектирование электронных устройств: учеб. пособие / В. Б. Венславский. - Чита: Экспресс-изд-во, 2008. - 131 с. - ISBN 978-5-9566-0127-3: 360-00. Экземпляры: Всего: 24, из них: Аб.пед.лит.-22, Н.аб.-2

5.2.2. Издания из ЭБС

1. 1. Попов, Вадим Петрович. Основы теории цепей. В 2 ч. Часть 1 : Учебник / Попов Вадим Петрович; Попов В.П. - 7-е изд. - М. : Издательство Юрайт, 2017. - 378. - (Бакалавр. Академический курс). - ISBN 978-5-534-02154-7. - ISBN 978-5-534-02155-4 : 115.48.[Электронный ресурс]

5.3. Базы данных, информационно-справочные и поисковые системы

Название	Ссылка

6. Перечень программного обеспечения

Программное обеспечение общего назначения: ОС Microsoft Windows, Microsoft Office, ABBYY FineReader, ESET NOD32 Smart Security Business Edition, Foxit Reader, АИБС "МегаПро".

Программное обеспечение специального назначения:

1) Logisim

7. Материально-техническое обеспечение дисциплины

Наименование помещений для проведения учебных занятий и для самостоятельной работы обучающихся	Оснащенность специальных помещений и помещений для самостоятельной работы	
Учебные аудитории для проведения занятий лекционного типа	Состав оборудования и технических средств обучения указан в паспорте аудитории, закрепленной расписанием по факультету	
Учебные аудитории для проведения лабораторных занятий		

8. Методические рекомендации по организации изучения дисциплины

Для эффективного освоения материала дисциплины необходимым является выполнение

^{*}Обязательно указываются методические рекомендации по организации самостоятельной работы обучающихся по дисциплине.

следующих требований:

- обязательное посещение всех лекционных и практических занятий, способствующее системному овладению материалом курса;
- все вопросы соответствующих разделов и тем по дисциплине необходимо фиксировать (на любых носителях информации);
- обязательное выполнение домашних заданий является важнейшим требованием и условием формирования целостного и системного знания по дисциплине;
- обязательность личной активности каждого студента на всех занятиях по дисциплине;
- в случаях неясности каких-либо вопросов, обсуждаемых на занятиях, необходимо задать соответствующие вопросы преподавателю, а не оставлять их непонятыми;
- в случаях пропусков занятий по уважительным причинам студентам предоставляется право подготовки и представления заданий и ответов на вопросы изученного материала, с расчетом на помощь преподавателя в его усвоении;
- в случаях пропусков без уважительной причины студент обязан самостоятельно изучить соответствующий материал;
- необходимым условием является самостоятельность и инициативность студентов при контроле набора баллов по дисциплине для успешного прохождения промежуточной аттестации.

Порядок организации самостоятельной работы студентов

Самостоятельная работа студентов предполагает:

- самостоятельный поиск, обработку (анализ, синтез, обобщение и систематизацию), адаптацию необходимой по дисциплине информации;
- выполнение заданий для самостоятельной работы;
- изучение и усвоение теоретического материала, представленного на лекционных занятиях и в соответствующих литературных источниках (рекомендуемая основная и дополнительная литература);
- самостоятельное изучение отдельных вопросов курса;
- подготовка к практическим и семинарским занятиям, в соответствии с рекомендациями преподавателя (выполнение конкретных заданий, соответствующие организационные действия и т.д.).

Как правило, организация самостоятельной работы предполагает:

- постановку цели;
- составление соответствующего плана;
- поиск, обработку информации;
- представление результатов работы.

Методические рекомендации по отдельным видам учебно-познавательной деятельности студентов

Методические рекомендации при подготовке к практическим занятиям

Для повышения эффективности проведения практических занятий необходимо учитывать все рекомендации по подготовке к ним, которые даются преподавателем в начале каждого модуля (формулируются соответствующие задания, проблемноориентированные вопросы, представляются рекомендации по методике организации 14 различных форм проведения занятий и т.д.). Определенные формы и методы работы на занятиях требуют предварительной самостоятельной подготовки студентов (например, внутригрупповая и межгрупповая дискуссии, ролевые игры, подготовка итогового семестрового проекта и т.д.). Поэтому необходимо фиксировать все рекомендации преподавателя по подготовке к занятиям.

Для эффективного освоения материала дисциплины в ходе практических занятий необходимо выполнение следующих требований:

- четко понимать цели предстоящих занятий (предварительно формулируются преподавателем):
- владеть навыками поиска, обработки, адаптации и презентации необходимого материала;
- уметь четко формулировать и отстаивать собственный взгляд на рассматриваемые проблемные вопросы, который необходимо подкреплять адекватной аргументацией;
- уметь выделять и формулировать противоречия по рассматриваемым проблемам, понимая их источники;
- владеть навыками публичного выступления (логично, ясно и лаконично излагать свои мысли; адекватно оценивать восприятие и понимание слушателями представляемого материала; отвечать на задаваемые вопросы; приводить адекватные и убедительные аргументы в защиту своей позиции и т.д.);
- уметь критически оценивать собственные знания, умения и навыки в динамике в сравнении с таковыми у других, с целью раскрытия дополнительных возможностей их развития;
- при подготовке к занятиям обязательно изучить рекомендуемую литературу;
- оценить различные точки зрения на проблемные вопросы нескольких исследователей, а не ограничиваться рассмотрением позиции одного автора;
- при формулировке собственной точки зрения предусмотреть убедительную ее аргументацию и возможность возникновения спорных ситуаций;
- владеть навыками работы в команде (при выполнении определенных заданий, предполагающих работу в микрогруппах, при проведении ролевых игр, дискуссий и т.д.).

Семинар – вид практических занятий, предусматривающий самостоятельную проработку студентами отдельных тем и проблем с содержанием учебной дисциплины и последующим представлением и обсуждением результатов этого изучения (в различных формах). Семинары представляют собой своеобразный синтез теоретической подготовки студентов с практической. Основной дидактической целью семинаров выступает оптимальное сочетание лекционных занятий систематической самостоятельной учебнопознавательной деятельностью студентов. Методические рекомендации при подготовке индивидуальных сообщений (докладов) Данный вид учебно-познавательной деятельности требует от студентов достаточно высокого базового уровня подготовки, большой степени самостоятельности и целого ряда умений и навыков серьезной интеллектуальной работы. Работа по подготовке индивидуальных сообщений и докладов предполагает достаточно длительную системную работу студента, а также в случае необходимости консультативную помощь преподавателя.

Работа должна быть тщательно продумана, спланирована и разделена на соответствующие этапы, каждый из которых требует целого ряда определенных умений и навыков:

- определение и формулировка темы сообщения или доклада (либо осмысление темы, сформулированной преподавателем в соответствующих случаях);
- составление плана с использованием анализа, синтеза, обобщения и логики построения изложения материала;
- определение источников информации;
- работа с источниками научной информации (подбор, анализ, обобщение, систематизация, адаптация и т.д.);
- формулировка основных обобщений и выводов по результатам анализа изученного материала.

Структура сообщения (доклада) может обоснованно варьировать, но в большинстве случаев она предполагает наличие следующих частей: вступления (обозначение актуальности и постановка проблемы), основной части (обзор различных точек зрения на проблему и ее решение), заключения (формулировка соответствующих обобщений, выводов,

предположений и перспектив), а в соответствующих случаях – перечня используемых источников информации. Методические рекомендации по подготовке к дискуссии Дискуссия выступает важнейшим средством активизации познавательной деятельности. Как метод активного обучения дискуссия может использоваться как в рамках традиционных (развернутая беседа, система докладов и рефератов), так и новых форм практических занятий (анализ конкретных ситуаций, ролевая игры, круглый стол и т.д.). Выделяется особая форма семинарского занятия – семинар-дискуссия. Различают следующие разновидности семинара-дискуссии:

- 1. По объему охватываемого материала:
- - фрагментарные дискуссии («мини-дискуссии») (предназначенные для обсуждения какогото конкретного вопроса и занимающие, как правило, определенную часть занятия);
- - развернутые дискуссии (посвященные изучению раздела (темы) в целом, охватывающие одно или несколько занятий);
- 2. По реальности существования участников:
- - реальные (предполагающие общение с реальными участниками);
- - воображаемые (предполагающие общение с воображаемым оппонентом (инсценировка спора)).

Организация дискуссии предполагает последовательность определенных этапов:

- - подготовка дискуссии;
- - проведение дискуссии;
- - анализ итогов дискуссии.

Самым важным этапом при этом является подготовка к дискуссии, т.к. все последующие этапы определяются именно качеством предварительной подготовки. Подготовка к дискуссии, как правило, включает следующие составляющие:

- - определение темы дискуссии (тема может быть задана преподавателем, а также обсуждаться и выбираться в процессе изучения материала по критериям наличия противоречий, проблемно-ориентированного характера при высокой актуальности, научной и социальной значимости);
- - определение предмета дискуссии (с тем, чтобы не потерять время на обсуждение второстепенных аспектов проблемы);
- - определение задач дискуссии (для организации целенаправленности, разделения функций участников дискуссии, экономии времени).

Подготовка к дискуссии должна предполагать индивидуальные и групповые консультации, предназначенные для задания целенаправленности дискуссии, а также – для активизации самостоятельной работы студентов. При этом преподавателю необходимо избегать детального разъяснения содержания проблемы, т.к. в этом случае не о чем будет спорить, и дискуссия будет сорвана. Задача преподавателя должна состоять в ненавязчивой помощи участникам будущей дискуссии в определении наличия противоречивых точек зрения на рассматриваемую проблему, порекомендовав изучить первоисточники и дополнительную литературу. Необходимо подчеркнуть особую важность тщательной подготовки к дискуссии самого преподавателя, выступающего в качестве модератора. Цель такой подготовки состоит не только в том, чтобы обрести уверенность при обсуждении научной проблемы, но и в том, чтобы составить ясное представление о качестве подготовки участников дискуссии.

Разработчик/группа разработчиков: Владимир Борисович Венславский
Типовая программа утверждена
Согласована с выпускающей кафедрой
Заведующий кафедрой
«»20г.