МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Забайкальский государственный университет» (ФГБОУ ВО «ЗабГУ»)

Ракультет естественных наук, математики и технологий Кафедра Физики	
T 17 T	УТВЕРЖДАЮ:
	Декан факультета
	Факультет естественных наук, математики и технологий
	Токарева Юлия Сергеевна
	«»20

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.12 Физика на 324 часа(ов), 9 зачетных(ые) единиц(ы) для направления подготовки (специальности) 21.05.04 - Горное дело

составлена в соответст	вии с ФГОС ВС), утвержденным п	риказом
Министерства образо	ования и науки 🛚	Российской Федера	ации от
«»	20	г. №	

Профиль – Открытые горные работы (для набора 2022) Форма обучения: Заочная

1. Организационно-методический раздел

1.1 Цели и задачи дисциплины (модуля)

Цель изучения дисциплины:

формирование у студентов представлений, понятий, знаний о наиболее общих закономерностях различных форм движения материи, как научном фундаменте построения специальных технических дисциплин и основе объективного изучения окружающего мира а также как составной части компетенций, которые должен приобрести студент в процессе обучения.

Задачи изучения дисциплины:

в процессе изучения "Физики" студенты должны овладеть знаниями физических явлений, фундаментальных понятий, законов и теорий классической и современной физики, уметь применять систему фундаментальных знаний для формулирования и решения технических и технологических проблем в области горного дела, выработать способность к абстрактному мышлению, анализу, синтезу а также использованию теоретических знаний при выполнении производственных, технологических и инженерных исследований в соответствии со специализацией.

1.2. Место дисциплины (модуля) в структуре ОП

Дисциплина «Физика» входит в Блок 1, обязательной части «Дисциплины (модули)» образовательной программы в соответствии с ФГОС 3++ и относится к базовым дисциплинам, обязательным для изучения студентами является базовой основой изучения общетехнических и специальных технических дисциплин: механика, электротехника и электроника, сопротивление материалов и др. Для успешного освоения дисциплины студенты должны иметь базовую подготовку по курсу физики в объеме программы общего среднего образования, а также по разделам высшей математики: векторная алгебра, дифференциальное и интегральное исчисления, дифференциальные уравнения, теория вероятности и математическая статистика. Дисциплина изучается на 1,2 курсе в 1,2,3 семестрах.

1.3. Объем дисциплины (модуля) с указанием трудоемкости всех видов учебной работы

Общая трудоемкость дисциплины (модуля) составляет 9 зачетных(ые) единиц(ы), 324 часов.

Виды занятий	Семестр 1	Семестр 2	Семестр 3	Всего часов
Общая трудоемкость				324
Аудиторные занятия, в т.ч.	10	10	10	30
Лекционные	4	4	4	12

(ЛК)				
Практические (семинарские) (ПЗ, СЗ)	0	0	0	0
Лабораторные (ЛР)	6	6	6	18
Самостоятельна я работа студентов (СРС)	62	62	98	222
Форма промежуточной аттестации в семестре	Экзамен	Зачет	Экзамен	72
Курсовая работа (курсовой проект) (КР, КП)				

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые рез	вультаты освоения образовательной программы	Планируемые результаты обучения по дисциплине
Код и наименование компетенции	Индикаторы достижения компетенции, формируемые в рамках дисциплины	Дескрипторы: знания, умения, навыки и (или) опыт деятельности
УК-1	УК-1.1. Анализирует задачу, выделяя ее базовые составляющие, осуществляет декомпозицию задачи	Знать: способы, пути выделения проблемной ситуации в процессе анализа проблемы Уметь: определять этапы разрешения проблемы с учетом вариативных контекстов Владеть: приемами выявления проблемной ситуации
УК-1	УК-1.3. Рассматривает возможные варианты решения задачи, оценивая их достоинства и недостатки	Знать: теоретические основы системного подхода, понятие риска и классификацию рисков Уметь: анализировать проблемную

		ситуацию как систему, выявляя ее составляющие и связи между ними, определять варианты решения проблемных ситуаций, оценивать их преимущества и риски Владеть: приемами анализа вариантов решения проблем на основе системного подхода с учетом оценки их преимуществ и рисков
УК-6	УК-6.1. Применяет знание о своих ресурсах и их пределах (личностных, ситуативных, временных и т.д.), для успешного выполнения порученной работы	Знать: теоретикометодологические основы самооценки, саморазвития, самореализации Уметь: применять рефлексивные методы в процессе оценки разнообразных ресурсов, используемых для решения задач самоорганизации и саморазвития Владеть: приемами саморазвития и самореализации в профессиональной и других сферах деятельности
УК-6	УК-6.5. Демонстрирует интерес к учебе и использует предоставляемые возможности для приобретения новых знаний и навыков	Знать: основные виды профессионального образования, способы приобретения новых знаний и навыков с целью совершенствования своей деятельности Уметь: определять пути и механизмы совершенствования личностного и профессионального становления в соответствии с избранной сферой профессиональной деятельности Владеть: приемами демонстрации интереса к учебе, использования предоставленных возможностей для профессионального и личностного развития

3. Содержание дисциплины

3.1. Разделы дисциплины и виды занятий

3.1 Структура дисциплины для заочной формы обучения

Модуль	Номер раздела	Наименование раздела	Темы раздела	Всего часов	-	цитор анят		C P
					Л К	П 3 (С 3)	Л Р	С
1	1.1	Физические основы механики	Кинематика; Динамика; Законы сохранения; Элементы механики жидкостей; Элементы теории относительности	54	4	0	6	44
2	2.1	Молекулярная физика	Кинетическая теория идеальных газов; Термодинамика	20	0	0	0	20
3	3.1	Электричеств о и магнетизм	Электромагнитное поле в вакууме; Движение заряженных частиц в электрическом и магнитном полях; Взаимодействие электрических и магнитных полей. Уравнения Максвелла; Электрические и магнитные свойства вещества; Проводимость разных сред	58	4	0	6	48
4	4.1	Колебания и волны	Колебательные процессы; Волновые процессы	16	0	0	0	16
5	5.1	Оптика	Геометрическая оптика; Волновая оптика; Квантовая оптика	42	4	0	6	32
6	6.1	Основы атомной физики и квантовой механики	Волновые свойства микрочастиц; Квантование физических величин; Атомы и молекулы;	38	0	0	0	38

			Излучение и спектры					
7	7.1	Основы квантовой статистики и физики твердого тела	Квантовая статистика	8	0	0	0	8
8	8.1	Основы физики атомного ядра и элементарных частиц	Атомное ядро; Элементарные частицы	16	0	0	0	16
	Итого			252	12	0	18	222

3.2. Содержание разделов дисциплины

3.2.1. Лекционные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Динамика	Динамические характеристики поступательного и вращательного движений.	2
	1.1	Законы сохранения	Описание движения системы взаимодействующих тел. Законы сохранения импульса, момента импульса, механической энергии.	2
3	3.1	Электромагни тное поле в вакууме.	Основные характеристики и свойства электростатического поля. Основные характеристики и свойства магнитостатического поля	2
	3.1	Проводимость разных сред	Сила и плотность тока. Закон Ома. Закон Джоуля-Ленца. Правила Кирхгофа. Электронная теория проводимости металлов.	2
5	5.1	Волновая оптика	Интерференция дифракция волн. Поляризация волн. Поглощение, рассеяния и дисперсия света.	2
	5.1	Квантовая оптика	Тепловое излучение. Фотоэффект. Фотоны, свойства фотонов.	2
8		•		

3.2.2. Практические занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)

3.2.3. Лабораторные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Кинематика	Обработка результатов физического эксперимента	2
	1.1	Законы сохранения	Применение закона сохранения энергии в экспериментальных задачах	4
3	3.1	Проводимость разных сред	Измерения сопротивления проводников с помощью моста Уинстона; Исследования зависимости силы тока, напряжения, мощности и коэффициента полезного действия в цепи постоянного тока от сопротивления нагрузки	6
5	5.1	Волновая оптика	Определение длины волны света с помощью дифракционной решетки	2
	5.1	Квантовая оптика	Определение постоянной Стефана -Больцмана. Изучение законов фотоэффекта. Определение постоянной Планка.	4
8				

3.3. Содержание материалов, выносимых на самостоятельное изучение

Модуль	Номер раздела	Содержание материалов, выносимого на самостоятельное изучение	Виды самостоятельной деятельности	Трудоемкость (в часах)
1	1.1	Баллистическое движение	Конспект; Д.К.; Эксп; Эл ресурсы; У.З.	8
	1.1	Законы Кеплера. Поле тяготения и его напря-	Конспект; Д.К.; Эксп; Эл ресурсы; У.З.	8

		женность. Космические скорости. Неинерциальные системы отсчета. Силы инерции.		
	1.1	Уравнение движения тел переменной массы. Свободные оси вращения. Гироскоп	Конспект; Эксп; Эл ресурсы; У.З.	8
	1.1	Вязкость. Ламинарный и неламинарный режим течения жидкостей. Движение в жидкостях и газах.	Конспект; Эл ресурсы;	8
	1.1	Основы теории относительности	Эл ресурс, Д.К	12
2	2.1	Молекулярно- кинетическая теория идеальных газов	Конспект; Эл ресурсы;	10
	2.1	Реальные газы, жидкости и твердые тела	Конспект; Д.К.; Эксп; Эл ресурсы	10
3	3.1	Применение принципа суперпозиции, теоремы Гаусса и теоремы о циркуляции для решения задач.	Д.К.; Эксп; Коспект; Эл ресурсы.	10
	3.1	Применение движения заряженных частиц в электрических и магнитных полях в техниче-ских устройствах: ускорители заряженных частиц, электроннолучевая трубка, эффект Холла, МГД-генератор.	Д.К.; Конспект; Эл ресурсы;	8
	3.1	Применение явления электромагнитной индукции в технических устройствах: генераторы переменного тока, трансформаторы	Д.К.; Конспект; Эл ресурсы	10
	3.1	Условия на границе раздела двух	Конспект; Эл ресурсы; ; У.3	8

		диэлектриков и магнетиков. Пьезоэффект, Сегнетоэлектрики, ферромагнетики		
	3.1	Проводимость газов, растворов, электролитов.	Конспект; Эл ресурсы	12
4	4.1	Дифференциальные уравнения собственных, затухающих и вынужденных колебаний и их решения. Автоколебательные системы. Принцип обратной связи.	Конспект; Д.К.; Эксп; Эл ресурсы; У.З.	8
	4.1	Звуковые волны. Эффект Доплера. Линзы, правила построения в тонких линзах.	Конспект; Д.К.; Эксп; Эл ресурсы; Сл.	8
5	5.1	Линзы. Правила построения в тонких линзах	Конспект; Эл ресурсы	8
	5.1	Применение интерференции и дифракции в технике	Конспект; Эл ресурсы	12
	5.1	Применение фотоэффекта.	Конспект; Эл ресурсы	12
6	6.1	Давление света. Эффект Комптона	Конспект; Эл ресурсы	10
	6.1	Туннельный эффект. Линейный гармонический осциллятор	Конспект; Эл ресурсы	10
-	6.1	Периодическая система Д.И. Менделеева.	Конспект; Эл ресурсы	8
	6.1	Химические связи и строения молекул	Конспект; Эл ресурсы	10
7	7.1	Квантовая теория электропроводности металлов. Сверхпроводимость. Термоэлектрические	Конспект; Эл ресурсы	8

		явления.		
8	8.1	Ядерная энергетика.	Конспект; Эл ресурсы	8
	8.1	Классификация элементарных частиц.	Конспект; Эл ресурсы	8

4. Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств текущего контроля и промежуточной аттестации по итогам освоения дисциплины представлен в приложении.

Фонд оценочных средств

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

5.1.1. Печатные издания

1. 1. Савельев, Игорь Владимирович. Курс физики: В 3 т. Т.1: Механика. Молекулярная физика / Савельев Игорь Владимирович. - Москва: Наука, 1989. - 352 с.: ил. ISBN — 5-02-014430-4(Т.1). Количество экземпляров: 158. 2. Савельев, Игорь Владимирович. Курс общей физики. Т. 2: Электричество и магнетизм. Волны. Оптика / Савельев Игорь Владимирович. - 3-е изд., испр. - Москва: Наука. Гл. ред. физ.-мат. лит., 1988. — 496 с.: ил. — 1-20. Количество экземпляров: 18. 3. Савельев, И.В. Курс общей физики: Т. 3: Оптика. Атомная физика. Физика атомного ядра и элементарных частиц / И. В. Савельев. - 4-е изд., стер. - Москва: Наука. Гл. ред. физ.-мат. лит., 1987. — 528 с.: ил. — 0-85. Количество экземпляров: 46.

5.1.2. Издания из ЭБС

1. 1. Родионов, Василий Николаевич. Физика: Учебное пособие / Родионов Василий Николаевич; Родионов В.Н. - 2-е изд. - М.: Издательство Юрайт, 2017. - 295. (Университеты России). - ISBN 978-5-534-01280-4. Количество экземпляров: 0 + е. 2. Ильин, Вадим Алексеевич. Физика: Учебник и практикум / Ильин Вадим Алексеевич; Ильин В.А., Бахтина Е.Ю., Виноградова Н.Б., Самойленко П.И. - М.: Издательство Юрайт, 2017. - 399. - (Бакалавр. Прикладной курс). - ISBN 978-5-53401411-2. Количество экземпляров: 0 + е.

5.2. Дополнительная литература

5.2.1. Печатные издания

1. 1. Верхотуров, Анатолий Русланович. Физика: учеб. пособие / Верхотуров Анатолий Русланович, Шамонин Виктор Александрович. - Чита: ЧитГУ, 2011. - 176 с. - ISBN 9785-9293-0600-6. Количество экземпляров: 169. 2. Верхотуров, Анатолий Русланович. Физика: учеб. пособие / Верхотуров Анатолий Русланович, Шамонин Виктор

Александрович, Белкин Сергей Юрьевич. - Чита : ЧитГУ, 2010. - 243 с. - ISBN 978-5-9293-0646-4. Количество экземпляров: 164. 3. Трофимова, Т. И. Курс физики : учеб. пособие / Т. И. Трофимова. - 2-е изд., испр. и доп. - Москва : Высш. шк., 1990. – 478 с. – ISBN 5-06-001540-8. Количество экземпляров: 80. 4. Савченко, Н.Д. Основы физики : учеб. пособие. Ч. 1 : Механика. Электродинамика. Термодинамика / Н. Д. Савченко, Т. В. Кузьмина, Т. В. Рахлецова. – Чита: ЗабГУ, 2015. - 233 с. - ISBN 978-5-9293-1231-1. Количество экземпляров: 50 + е. 5. Основы физики : учеб. пособие. Ч. II : Физика колебаний и волн. Основы квантовой механики. Физика атомного ядра и элементарных частиц / Н.Д. Савченко [и др.]. - Чита : ЗабГУ, 2015. - 267 с. - ISBN 978-5-9293-1460-5. - ISBN 978-5-9293-1162-8. Количество экземпляров: 10 + е.

5.2.2. Издания из ЭБС

1. 1. Трофимова Т.И. Руководство к решению задач по физике. 3-е изд., испр. и доп. Учебное пособие для прикладного бакалавриата. Трофимова Т.И., -М.: Издательство Юрайт, 2017.-265с.- https://www.biblio-online.ru/viewer/1B164B8C-5D56-49A5-AE9BE2C23FF6479A.

5.3. Базы данных, информационно-справочные и поисковые системы

Название	Ссылка
Информационная система «Единое окно доступа к образовательным ресурсам»	http://window.edu.ru/
Научная Электронная Библиотека	http://www.e-library.ru
Электронные версии учебников, пособий, методических разработок, указаний и рекомендаций по всем видам учебной работы, предусмотренных вузовской рабочей программой, находящиеся в свободном доступе для студентов, обучающихся в вузе, на внутри сетевом сервере	http://www.zabgu.ru/
Интернет-тестирование	http://test.i-exam.ru

6. Перечень программного обеспечения

Программное обеспечение общего назначения: OC Microsoft Windows, Microsoft Office, ABBYY FineReader, ESET NOD32 Smart Security Business Edition, Foxit Reader, АИБС "МегаПро".

Программное обеспечение специального назначения:

- 1) Google Chrome
- 2) Mozilla Firefox

7. Материально-техническое обеспечение дисциплины

Наименование помещений для проведения учебных занятий и для самостоятельной работы обучающихся	Оснащенность специальных помещений и помещений для самостоятельной работы
Учебные аудитории для проведения занятий лекционного типа	Состав оборудования и технических средств обучения указан в паспорте аудитории,
Учебные аудитории для проведения практических занятий	закрепленной расписанием по факультету
Учебные аудитории для проведения лабораторных занятий	
Учебные аудитории для промежуточной аттестации	
Учебные аудитории для проведения групповых и индивидуальных консультаций	Состав оборудования и технических средств обучения указан в паспорте аудитории, закрепленной расписанием по кафедре

8. Методические рекомендации по организации изучения дисциплины

Лекции являются основным источником теоретического материала по дисциплине «Физика». Посещение и конспектирование лекций является обязательной составляющей успешного освоения дисциплины обучающимися.

Для эффективного освоения материала дисциплины «Физика» необходимо выполнение следующих требований:

- обязательное посещение всех лекционных и практических занятий, способствующее системному овладению материалом курса;
- все вопросы соответствующих разделов и тем по дисциплине необходимо фиксировать (на любых носителях информации);
- обязательное выполнение домашних заданий является важнейшим требованием и условием формирования целостного и системного знания по дисциплине;
- обязательность личной активности каждого студента на всех занятиях по дисциплине;
- в случаях неясности каких-либо вопросов, обсуждаемых на занятиях, необходимо задать соответствующие вопросы преподавателю, а не оставлять их непонятыми; в случаях пропусков занятий по уважительным причинам студентам предоставляется право подготовки и представления заданий и ответов на вопросы изученного материала, с расчетом на помощь преподавателя в его усвоении;
- в случаях пропусков без уважительной причины студент обязан самостоятельно изучить соответствующий материал;
- необходимым условием является самостоятельность и инициативность студентов при контроле набора баллов по дисциплине для успешного прохождения промежуточной аттестации.

Порядок организации самостоятельной работы студентов Самостоятельная работа студентов предполагает:

- самостоятельный поиск, обработку (анализ, синтез, обобщение и систематизацию), адаптацию необходимой по дисциплине информации;

- выполнение заданий для самостоятельной работы;
- изучение и усвоение теоретического материала, представленного на лекционных занятиях и в соответствующих литературных источниках (рекомендуемая основная и дополнительная литература);
- самостоятельное изучение отдельных вопросов курса;
- подготовка к практическим и лабораторным занятиям, в соответствии с рекомендациями преподавателя (выполнение конкретных заданий, соответствующие организационные действия и т.д.).

Порядок организации лабораторной работы студентов

Лабораторная работа студентов предполагает сознательной активной работы не только в лаборатории при сборке установки и проведении измерений, но и дома при под-готовке к измерениям, обработке результатов и составления отчета.

Выполнение лабораторной работы есть определенная последовательность действий: — подготовка к эксперименту;

- проведение измерений;
- обработка полученных результатов;
- формулировка выводов и написание отчета.

Для грамотного и быстрого их выполнения должна сложиться определенная система знаний и умений (ориентировочная основа действия), которая обеспечит правильное и рациональное исполнение действия.

Поэтому выполнение каждой лабораторной работы по физике необходимо начинать с изучения ее описания и приведения знаний в систему, а именно: — ясно представить себе общую цель данной конкретной лабораторной работы и последовательность задач, решение которых приведет к достижению окончательной цели;

- знать, какое физическое явление изучается в данной работе, какими зависимостям связаны описывающие его величины;
- знать основные особенности объекта исследования
- изучить и уметь объяснить физические основы используемых в работе методов измерения искомых величин;
- уметь нарисовать принципиальную схему используемой установки и знать назначение каждого из ее узлов;
- знать последовательность выполнения этапов лабораторной работы;
- иметь общее представление об ожидаемых результатах проводимого эксперимента и уметь выбрать метод, нужный для их математической обработки

Порядок организации студентов на практическом занятии

На практических занятиях обобщаются и систематизируются знания полученные на лекционных занятиях и формируются умения решать типовые задачи. При решении за-дач по физике студент должен уметь:

- выделять описываемое явление (объект), анализировать условие задачи;
- выполнять построение модели явления;
- формулировать выводы из модели;
- выявлять применения полученных знаний в профессиональной деятельности.

Разработчик/группа разработчиков:
Анатолий Прокопьевич Дружинин
Типовая программа утверждена
Согласована с выпускающей кафедрой
Заведующий кафедрой
« » 20 г