МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Забайкальский государственный университет» (ФГБОУ ВО «ЗабГУ»)

Энергетический факультет Кафедра Физики и техники связи		
кафедра Физики и техники связи	УТВЕРЖДАК	O :
	Декан факульт	ета
	Энергетически	й факультет
	Батухтин Андр Геннадьевич	рей
	«»	20
	Γ.	
РАБОЧАЯ ПРОГРАММА ДИСЦ	ДИПЛИНЫ (МОДУЛЯ)	
Б1.В.06 Электромагнитные		
на 108 часа(ов), 3 зачетных для направления подготовки (специальности) 1 технологии и систем	11.03.02 - Инфокоммуник	ационные
составлена в соответствии с ФГОС ВО Министерства образования и науки F	Российской Федерации от	
Профиль – Оптические системы и сети связи (для н		

Форма обучения: Заочная

1. Организационно-методический раздел

1.1 Цели и задачи дисциплины (модуля)

Цель изучения дисциплины:

Целью освоения дисциплины «Электромагнитные поля и волны» является углубление фундаментальных знаний о законах, описывающих электромагнитное поле, как вида материи, освоение математического аппарата и методов электродинамического описания явлений и процессов в радиоэлектронных устройствах различного назначения, изучение распространения электромагнитных волн в свободном пространстве и направляющих системах

Задачи изучения дисциплины:

Задачи освоения дисциплины состоят в формировании у студентов знаний по дисциплине, достаточных для самостоятельного использования математического аппарата и методов электродинамического описания явлений и процессов для разработки и использования радиоэлектронных устройств различного назначения. В результате изучения дисциплины студенты должны приобрести знания, навыки и умения, имеющие не только самостоятельное значение, но и обеспечивающие базовую подготовку для усвоения ряда последующих дисциплин: - О структуре электромагнитных волн, распространяющихся в различных средах, в линиях передачи электромагнитной энергии и объемных резонаторах; - О процессах распространения волн в различных средах; - Об основных уравнениях, описывающих электромагнитное поле, энергетических соот-ношениях и о физических процессах, происходящих в нем.

1.2. Место дисциплины (модуля) в структуре ОП

Учебная дисциплина «Электромагнитные поля и волны» входит в блок Б1.В.06 и является дисциплиной части формируемой участниками образовательных отношений, . Изучение дисциплины основывается на ранее изученных дисциплинах: высшей математики, физики и информатики. Дисциплина изучается на 2 курсе, во 2 семестре.

1.3. Объем дисциплины (модуля) с указанием трудоемкости всех видов учебной работы

Общая трудоемкость дисциплины (модуля) составляет 3 зачетных(ые) единиц(ы), 108 часов.

Виды занятий	Семестр 4	Всего часов
Общая трудоемкость		108
Аудиторные занятия, в т.ч.	12	12
Лекционные (ЛК)	4	4
Практические (семинарские) (ПЗ, СЗ)	4	4

Лабораторные (ЛР)	4	4
Самостоятельная работа студентов (СРС)	96	96
Форма промежуточной аттестации в семестре	Зачет	0
Курсовая работа (курсовой проект) (КР, КП)		

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые рез	ультаты освоения образовательной программы	Планируемые результаты обучения по дисциплине
Код и наименование компетенции	Индикаторы достижения компетенции, формируемые в рамках дисциплины	Дескрипторы: знания, умения, навыки и (или) опыт деятельности
ОПК-2	ОПК - 2 .1 . Находит и критически анализирует информацию, необходимую информацию для решения поставленной задачи;	Знать: методы теоретического моделирования, основы информационного поиска при проектировании сетей и систем связи и анализа его результатов; Уметь: квалифицированно проводить информационный поиск в области инфокоммуникаций и анализировать его результаты. Владеть: квалифицированными навыками информационного поиска для решения поставленной задачи и анализа его результатов;
ОПК-2	ОПК - 2 .2. Разрабатывает решение конкретной задачи, выбирая оптимальный вариант, оценивая его достоинства и недостатки;	Знать: особенности структуры электромагнитного поля волн, распространяющихся в

		различных средах, в линиях передачи электромагнитной энергии и объёмных резонаторах Уметь: проводить анализ физических процессов, происходящих в различных направляющих системах, устройствах сверхвысоких частот, в однородных и неоднородных средах, понимать сущность электромагнитной совместимости Владеть: основными экспериментальными методами исследования с целью создания новых перспективных средств электросвязи и информатики
ОПК-2	ОПК - 2 .3 . Формулирует в рамках поставленной цели проекта совокупность взаимосвязанных задач, обеспечивающих ее достижение	Знать: основные принципы осуществления компьютерного моделирования устройств, систем и процессов с использованием универсальных пакетов прикладных компьютерных программ Уметь: работать на компьютере и в компьютерных сетях, осуществлять компьютерное моделирование устройств, систем и

		процессов с использованием универсальных пакетов прикладных компьютерных программ Владеть: навыками самостоятельной работы на компьютере и в компьютерных сетях для осуществления компьютерного моделирование устройств, систем и процессов с использованием универсальных пакетов прикладных компьютерных программ
ОПК-2	ОПК-2.7. Владеет способами обработки и представления полученных данных и оценки погрешности результатов измерений	Знать: теорию обработки и оценки погрешности результатов измерений Уметь: представлять и оценивать правдоподобность полученных данных Владеть: способами обработки и представления полученных данных и оценки погрешности результатов измерений
ПК-1	ПК - 1.3. Владеет современными и зарубежными пакетами программ при решении схемотехнических, системных и сетевых задач, правилами и методами монтажа,	Знать: положения теорий электромагнитных волн и распространения радиоволн, цифровой обработки сигналов, информации и кодирования, электрической связи для решения

	настройки и регулировки узлов радиотехнических устройств и систем .	профессиональных задач Уметь: оценивать технические возможности и вырабатывать рекомендации по построению телекоммуникационных систем и сетей, их элементов и устройств
		Владеть: современными технические возможности и вырабатывать рекомендации по построению телекоммуникационных систем и сетей, их элементов и устройств
ПК-3	ПК - 3 .2. Знает методики проведения проверки технического состояния оборудования, трактов и каналов передачи	Знать: методики проведения проверки технического состояния оборудования, трактов и каналов передачи
		Уметь: проводить проверку технического состояния оборудования, трактов и каналов передачи
		Владеть: методикой проведения проверки технического состояния оборудования, трактов и каналов передачи
ПК-4	ПК - 4.1. Знает общие принципы функционирования оборудования; проведения ремонтных и восстановительных работ	Знать: структуру электромагнитных волн, распространяющихся в различных средах, в линиях передачи

	электромагнитной энергии и объемных резонатора	
	Уметь: моделировать процессы распространения электромагнитных волн различных средах.	В
	Владеть: навыками проведения ремонтно востановительных работ	

3. Содержание дисциплины

3.1. Разделы дисциплины и виды занятий

3.1 Структура дисциплины для заочной формы обучения

Модуль	Номер раздела	Наименование раздела	Темы раздела	Всего часов		(итор аняті		C P
					ЛК	П 3 (С 3)	Л Р	С
1	1.1	Электромагни тное поле	Основные уравнения электромагнитного поля	20	2	2	8	8
	1.2	Электромагни тное поле	Излучение электромагнитных волн	12	2	2	0	8
2	2.1	Общие свойства волн, распространя ющихся в волноводах	Основы электромагнитной теории волноводов	20	2	2	8	8
3	3.1	Физические основы распро странения эле ктромагнитны х волн в волноводах различных типов.	Распространение электромагнитных волн в волноводах	14	4	2	0	8

	3.2	Физические основы распро странения эле ктромагнитны х волн в волноводах различных типов.	Прямоугольные волноводы	12	2	2	0	8
	3.3	Физические основы распро странения эле ктромагнитны х волн в волноводах различных типов.	Коаксиальный волновод	14	2	2	0	10
4	4.1	Диэлектричес кие волноводы и о птоволоконны е линии передачи	Оптоволоконные линии	16	2	4	0	10
		Итого		108	16	16	16	60

3.2. Содержание разделов дисциплины

3.2.1. Лекционные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Электромагни тное поле	Распространения слоистых волн в слоистых средах.	2
	1.2	Излучение эле ктромагнитны х волн	Сущность процесса излучения. Возможность излучения как следствие урав-нений Максвелла. Элементарный электрический излучатель. Определение векторов электромагнитного поля, создаваемого элементарным электриче-ским излучателем в безграничной однородной изотропной среде.	2
2	2.1	Основы элект ромагнитной	волноводы. Дисперсионные уравнения. Источники	2

		теории волноводов	электромагнитных волн	
3	3.1	Распространен ие электромаг нитных волн в волноводах	Типы мод в волноводах. Численное решение дисперсионных уравнений. Дисперсионные кривые. Фазовая и групповая скорости. Потери энергии в волноводе. Анимации. Типы мод в волноводе.	4
	3.2	Прямоугольн ые волноводы	Волны типа Е и Н. Структура поля. Основная волна прямоугольного волновода. Выбор размеров для одноволнового режима работы. Токи на стенках волновода при волне основного типа. Коэффициент ослабления. Электрическая и тепловая прочность. Многоволновый режимы работы; фильтрация высших типов волн. Область применения прямоугольных волноводов. Круглые волноводы.	2
	3.3	Коаксиальный волновод	Волна Т: структура поля, волновое сопротивление, переносимая мощность. Структура токов на внешнем и внутреннем проводниках. Ослабление волн типа Т при распространении, коэффициент ослабления. Высшие типы волн.	2
4	4.1	Оптоволоконн ые линии	Оптический диапазон электромагнитных волн, оптические волноводы. Искажения импульса в оптических волноводах. Распространения слоистых волн в слоистых средах	2

3.2.2. Практические занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Электромагни тное поле	Расчет статических электромагнитных полей	2
	1.2	Излучение эле ктромагнитны х волн	Расчет плотности энергии и плотности потока энергии электромагнитного поля	2
2	2.1	Основы элект	Расчет характеристик	2

		ромагнитной теории волноводов	электромагнитного поля в диэлектриках и металлах	
3	3.1	Распространен ие электромаг нитных волн в волноводах	Диаграмма направленности элементарного электрического излучателя. Излучаемая мощность и сопротивление излучения.	2
	3.2	Прямоугольн ые волноводы	Расчет параметров распространения плоский электромагнитной волны в различных средах.	2
	3.3	Коаксиальный волновод	Расчет коэффициентов отражения и преломления плоских волн на границе раздела сред при наклонном падении	2
4	4.1	Оптоволоконн ые линии	Расчет скорости распространения волны и коэффициента затухания	4

3.2.3. Лабораторные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Электромагни тное поле	Изучение электростатического поля	4
	1.1	Электромагни тное поле	Определение удельного заряда электрона методом Чайлда Ленгмюра.	4
2	2.1	Основы элект ромагнитной теории волноводов	Изучение свойств диэлектриков в поле плоского конденсатора.	4
	2.1	Основы элект ромагнитной теории волноводов	Определение относительной диэлектрической проницаемости твердых изоляторов	4
4		•		

3.3. Содержание материалов, выносимых на самостоятельное изучение

Модуль	Номер	Содержание материалов,	Виды самостоятельной	Трудоемкость
	раздела	выносимого на	деятельности	(в часах)
		самостоятельное		
		изучение		

1	1.1	Уравнения Максвелла в дифференциальной	Конспект Эл. ресурсы; Подготовка доклада и	8
		форме. Закон Ома и	презентации. Подготовка к	
		Джоуля в интегральной и	защите лабор. раб. Отчет	
		дифференциальной	по лаб. раб.	
		формах. Уравнения	110 hao. pao.	
		непрерывности и закон		
		сохранения заряда.		
		Сторонние источники.		
		Полная система		
		уравнений Максвелла с		
		учетом сторонних источников.		
		Классификация		
		электромагнитных явлений по их		
		зависимости от времени.		
		Статические,		
		стационарные и		
		квазистационарные поля.		
		Гармонические		
		колебания. Роль		
		гармонических		
		колебаний в теории и		
		технике		
		телекоммуникационных		
		систем и радиотехнике.		
		Метод комплексных		
		амплитуд. Система		
		уравнений Максвелла		
		для монохроматического		
		поля в комплексной		
		форме. Комплексные		
		диэлектрическая и		
		магнитная		
		проницаемости среды.		
		Факторы, влияющие на		
		величину мнимой части		
		комплексной		
		диэлектрической и		
		магнитной		
		проницаемости.		
		Диэлектрические и		
		магнитные потери.		
	1.2	Решения волновых	Конспект; Эксп; РГР; Эл	8
	1.4		ресурсы; Подготовка к	o
		уравнений для гармонических полей в		
		виде плоских и	защите лабор. раб. Отчет по лаб. раб.	
		виде плоских и	по лао. рао.	

	сферических волн. Решение однородных уравнений Даламбера. Плоские волны. Решение неоднородных уравнений Даламбера для электродинамических потенциалов. Запаздывающие потенциалы. Сферическая волна. Условия излучения. Однородные и неоднородные волновые уравнения (уравнения Гельмгольца) для векторов гармонических электромагнитных полей. Электродинамические потенциалы гармонических полей.		
2.1	Плоские однородные волны в однородной анизотропной среде. Намагниченный фер-рит. Гиротропная среда как частный случай анизотропной среды. Частота собственной и вынужденной прецессии. Тензор магнитной проницаемости намагниченного феррита. Разложение линейно поляризованной волны на две волны круговой поляризации. Особенности распространение волн круго-вой поляризации левого и правого вращения в гиротропной среде. Магнитная проницаемость для волн круговой поляризации левого и правого вращения. Эффект Фарадея. Использование	Конспект; Эксп; РГР; Эл ресурсы; У.З, ;Сл	8

		эффекта Фарадея в технике СВЧ.		
3	3.1	Моделирование волновых процессов	Конспект; Эксп; РГР; Эл ресурсы;	8
	3.2	Структура поля волн типа Е и Н. Волна основного типа и ее характеристики. Выбор поперечных размеров для одноволнового режима работы. Многоволновые волноводы; способы фильтрации высших типов волн. Область применения круглых волноводов. Волноводы специальной формы. Волноводы П- и Нобразной формы.	Конспект; Эксп; РГР;	8
	3.3	Структура поля основной волны типа Т. Основные характеристики полосковых линий. Волновое сопротивление. Выбор размеров поперечного сечения. Микрополосковые линии. Щелевая и копланарная полосковые линии: структура поля основной волны квази-Т типа. Электрическая и тепловая прочность полосковых линий. Область применения полосковых линий	Конспект; Эксп; РГР; Эл ресурсы;	10
4	4.1	Круговая номограмма Вольперта-Смитта. Методы узкополосного согласования. Четвертьволновый трансформатор сопротивлений. Шлейфное согласование. Методы широкополосного	Конспект; Эксп; РГР; Эл ресурсы;	10

4. Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств текущего контроля и промежуточной аттестации по итогам освоения дисциплины представлен в приложении.

Фонд оценочных средств

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

5.1.1. Печатные издания

1. 1. Петров, Б.М. Электродинамика и распространение радиоволн: учеб./ Б.М. Петров. Москва: Горячая линия-Телеком, 2003. - 558 с.: ил. - ISBN 5-93517-073-6: 180-00. 2. Свешников, Игорь Вадимович. Электромагнитное поле: курс лекций. В 2 ч. Ч. 2 /Свешников Игорь Вадимович, Кузьмина Татьяна Витальевна.- Чита: ЧитГТУ, 2001. – 40 с. - ISBN 5-9293-0063-1: 7-50. 3.Белодед, Владимир Иванович. Электродинамика: учеб. пособие / Белодед Владимир Иванович.- Минск; Москва: Новое знание: ИНФРА- М, 2012. - 205 с.: ил.- (Высшее обра-зование). - ISBN 978-985-475-351-5. - ISBN 978-516-004-692-1: 229-90

5.1.2. Издания из ЭБС

1. 1. Петров, Б.М. Электромагнитные поля во вращающихся интерферометрах и гироскопах/ Б. М. Петров; Петров Б.М.- Мосоw: Горячая линия - Телеком, 2015. - . – Электромагнит-ные поля во вращающихся интерферометрах и гироскопах [Электронный ресурс / Петров Б.М. - М.: Горячая линия- Телеком, 2015. -http://www.studentlibrary.ru/book /ISBN 9785991204347.html. - ISBN 978-5-9912-0434-7.Ссылка на ресурс: http://www.studentlibrary.ru/ book/ISBN 9785991204347.html 2. Потапов, Леонид Алексеевич. Электродинамика и распространение радиоволн: Учебное пособие/ Потапов Леонид Алексеевич; Потапов Л.А.- 2-е изд.- Сотритег data. - М.: Издательство Юрайт, 2018. - 196. - (Бакалавр и специалист). - ISBN 978-5-534- 05369-2 : 1000.00. Ссылка на ресурс: httpss://www.biblio-online.ru/book/D8C0A7CD78A4-43D8-AEDB-81612B00E7BC

5.2. Дополнительная литература

5.2.1. Печатные издания

1. 1. Васильев, Александр Николаевич. Классическая электродинамика. Краткий курс лекций: учеб. пособие/Васильев Александр Николаевич. Санкт-Петербург: БХВПетербург, 2010. - 288с.: ил. - ISBN 978-5-9775-0343-3: 226-00. 2. Верхотуров, Анатолий Русланович. Физика. Электродинамика. Физика колебаний и волн. Квантовая физика: учеб. пособие/Верхотуров Анатолий Рус-ланович, Шамонин Виктор Александрович. - Чита: ЧитГУ, 2004. - 199с. - 98-00. 3. Тамм, Игорь Евгеньевич. Основы теории электричества: учеб. пособие / Тамм Игорь Евгеньевич. - 10-е изд., испр. - Москва: Наука, 1976. - 616 с.: ил. - 1-73.

5.2.2. Издания из ЭБС

1. 1. Кравченко, Николай Юрьевич. Физика: Учебник и практикум / Кравченко Николай Юрьевич; Кравченко Н.Ю.- М.: Издательство Юрайт, 2017. - 300. - (Профессиональное образование). - ISBN 978-5-534-01418-1 : 117.12. Ссылка на ресурс: httpss://www.biblioonline.ru/book/1D208927-2996-46B3-B8FF-F3F55FF62666 2.Мусин, Юрат Рашитович. Физика: электричество и магнетизм: Учебное пособие/ Мусин Юрат Рашитович; Мусин Ю.Р.- 2-е изд.- М.: Издательство Юрайт, 2017. - 261. - (Профессиональное образование). - ISBN 978-5-534-03005-1 : 83.54. Ссылка на ресурс: httpss://www.biblioonline.ru/book/F7AD27B7-C3E9-4578-8274-E25D00CDF09

5.3. Базы данных, информационно-справочные и поисковые системы

Название	Ссылка
1.Информационная система «Единое окно доступа к образовательным ресурсам» (http://window.edu.ru/). 2.Научная Электронная Библиотека http://www.e-library.ru. 3.Электронные версии учебников, пособий, методических разработок, указаний и реко-мендаций по всем видам учебной работы, предусмотренных вузовской рабочей програм-мой, находящиеся в свободном доступе для студентов, обучающихся в вузе, на внутри се-тевом сервере http://www.zabgu.ru/.	http://www.zabgu.ru/

6. Перечень программного обеспечения

Программное обеспечение общего назначения: ОС Microsoft Windows, Microsoft Office, ABBYY FineReader, ESET NOD32 Smart Security Business Edition, Foxit Reader, АИБС "МегаПро".

Программное обеспечение специального назначения:

1) АИБС "МегаПро"

7. Материально-техническое обеспечение дисциплины

Наименование помещений для проведения учебных занятий и для самостоятельной работы обучающихся	Оснащенность специальных помещений и помещений для самостоятельной работы
Учебные аудитории для проведения занятий лекционного типа	Состав оборудования и технических средств обучения указан в паспорте аудитории,
Учебные аудитории для проведения	закрепленной расписанием по факультету

практических занятий
Учебные аудитории для проведения лабораторных занятий
Учебные аудитории для промежуточной аттестации

8. Методические рекомендации по организации изучения дисциплины

Лекции являются основным источником теоретического материала по дисциплине «Электромагнитные поля и волны». Посещение и конспектирование лекций является обязательной составляющей успешного освоения дисциплины обучающимися. Для эффективного освоения материала дисциплины «Электромагнитные поля и волны» необходимо выполнение следующих требований:

- обязательное посещение всех лекционных и практических занятий, способствую-щее системному овладению материалом курса;
- все вопросы соответствующих разделов и тем по дисциплине необходимо фиксировать (на любых носителях информации);
- обязательное выполнение домашних заданий является важнейшим требованием и условием формирования целостного и системного знания по дисциплине;
- обязательность личной активности каждого студента на всех занятиях по дисциплине;
- в случаях неясности каких-либо вопросов, обсуждаемых на занятиях, необходимо задать соответствующие вопросы преподавателю, а не оставлять их непонятыми;
- в случаях пропусков занятий по уважительным причинам студентам предоставляется право подготовки и представления заданий и ответов на вопросы изученного мате-риала, с расчетом на помощь преподавателя в его усвоении;
- в случаях пропусков без уважительной причины студент обязан самостоятельно изучить соответствующий материал;
- необходимым условием является самостоятельность и инициативность студентов при контроле набора баллов по дисциплине для успешного прохождения промежуточной аттестации.

Порядок организации самостоятельной работы студентов

Самостоятельная работа студентов предполагает:

- самостоятельный поиск, обработку (анализ, синтез, обобщение и систематиза-цию), адаптацию необходимой по дисциплине информации;
- выполнение заданий для самостоятельной работы;
- изучение и усвоение теоретического материала, представленного на лекционных занятиях и в соответствующих литературных источниках (рекомендуемая основная и до-полнительная литература);
- самостоятельное изучение отдельных вопросов курса;
- подготовка к практическим и лабораторным занятиям, в соответствии с рекомендациями преподавателя (выполнение конкретных заданий, соответствующие организаци-онные действия и т.д.).

Порядок организации лабораторной работы студентов

Лабораторная работа студентов предполагает сознательной активной работы не только в лаборатории при сборке установки и проведении измерений, но и дома при под-готовке к измерениям, обработке результатов и составления отчета.

Выполнение лабораторной работы есть определенная последовательность действий:

- подготовка к эксперименту;
- проведение измерений;
- обработка полученных результатов;
- формулировка выводов и написание отчета.

Для грамотного и быстрого их выполнения должна сложиться определенная система знаний и умений (ориентировочная основа действия), которая обеспечит правильное и рациональное исполнение действия.

Поэтому выполнение каждой лабораторной работы необходимо начинать с изучения ее описания и приведения знаний в систему, а именно:

- ясно представить себе общую цель данной конкретной лабораторной работы и после-довательность задач, решение которых приведет к достижению окончательной цели;
- знать, какое физическое явление изучается в данной работе, какими зависимостям свя-заны описывающие его величины;
- знать основные особенности объекта исследования
- изучить и уметь объяснить физические основы используемых в работе методов изме-рения искомых величин;
- уметь нарисовать принципиальную схему используемой установки и знать назначение каждого из ее узлов;
- знать последовательность выполнения этапов лабораторной работы;
- иметь общее представление об ожидаемых результатах проводимого эксперимента и уметь выбрать метод, нужный для их математической обработки Порядок организации студентов на практическом занятии

На практических занятиях обобщаются и систематизируются знания, полученные на лекционных занятиях, и формируются умения решать типовые задачи. При решении задач студент должен уметь:

- выделять описываемое явление (объект), анализировать условие задачи;
- выполнять построение модели явления;
- формулировать выводы из модели;
- выявлять применения полученных знаний в профессиональной деятельности.

Разработчик/группа разработчиков: Николай Петрович Степанов	
Типовая программа утверждена	
Согласована с выпускающей кафедрой	
Заведующий кафедрой	
	Γ.