МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Забайкальский государственный университет» (ФГБОУ ВО «ЗабГУ»)

Горный факультет Кафедра Технических систем и робототехники	
кафедра технических систем и рооототехники	УТВЕРЖДАЮ:
	Декан факультета
	Горный факультет
	Авдеев Павел Борисович
	«»20
	Γ.
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИ	ны (модуля)
Б1.В.03.03 САЕ-анализ на 72 часа(ов), 2 зачетных (ые) един для направления подготовки (специальности) 15.03.05 - Ко обеспечение машиностроительных про	нструкторско-технологическое
составлена в соответствии с ФГОС ВО, утверж Министерства образования и науки Российск «» 20 г. №	ой Федерации от
Профиль – Технология горного машиностроения (для набо Форма обучения: Заочная	pa 2024)

1. Организационно-методический раздел

1.1 Цели и задачи дисциплины (модуля)

Цель изучения дисциплины:

овладение навыками решения различного рода профессиональных задач, связанных с моделированием продукции и объектов машиностроительных производств с использованием стандартных пакетов и средств автоматизированного проектирования.

Задачи изучения дисциплины:

- моделирование продукции и объектов машиностроительных производств с использованием стандартных пакетов и средств автоматизированного проектирования; - проведение, динамических и тепловых расчетов с использованием стандартных пакетов и средств автоматизированного проектирования.

1.2. Место дисциплины (модуля) в структуре ОП

Дисциплина САЕ-анализ изучается в 7 семестре и является важной дисциплиной с профессиональным уклоном, ориентированной на освоение современных тенденций в области автоматизированного проектирования

1.3. Объем дисциплины (модуля) с указанием трудоемкости всех видов учебной работы

Общая трудоемкость дисциплины (модуля) составляет 2 зачетных(ые) единиц(ы), 72 часов.

Виды занятий	Семестр 7	Всего часов
Общая трудоемкость		72
Аудиторные занятия, в т.ч.	8	8
Лекционные (ЛК)	4	4
Практические (семинарские) (ПЗ, СЗ)	4	4
Лабораторные (ЛР)	0	0
Самостоятельная работа студентов (СРС)	64	64
Форма промежуточной аттестации в семестре	Зачет	0
Курсовая работа (курсовой проект) (КР, КП)		

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые рез	вультаты освоения образовательной программы	Планируемые результаты обучения по дисциплине
Код и наименование компетенции	Индикаторы достижения компетенции, формируемые в рамках дисциплины	Дескрипторы: знания, умения, навыки и (или) опыт деятельности
УК-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	Знать: Знать виды инженерного анализа, функциональные возможности и классификацию систем САЕ Уметь: Уметь выбирать соответствующий класс САЕ системы для решения заданной задачи, выполнять инженерный анализ
		Владеть: Владеть методикой выбора соответствующего класс а САЕ системы для решения заданной задачи, выполнением инженерного анализа

3. Содержание дисциплины

3.1. Разделы дисциплины и виды занятий

3.1 Структура дисциплины для заочной формы обучения

Модуль	Номер раздела	Наименование раздела	Темы раздела	Всего часов	_	(итор аняті		C P
					Л К	П 3 (С 3)	Л P	С
1	1.1	Основные принципы и понятия инженерного	Основные принципы и понятия инженерного анализа: прочность конструкций,	6	2	0	0	4

		анализа.	напряженно- деформированное состояние, критерии разрушения. Использование численных методов при проектировании конструкций и машин.					
2	2.1	Численный инженерный анализ в среде САЕ	Численный инженерный анализ в среде САЕ. Постановка задачи. Выбор одного из промышленных решателей: Nastran, ANSYS, LS-Dyna, ABAQUS и др. для выбранного типа анализа.	23	1	2	0	20
	2.2	Расчет модели с применением систем автоматизаци и инженерных расчётов.	Создание геометрической САD-модели. Создание идеализированной геометрической модели. Создание конечно-элементной модели. Задание физикомеханических свойств объекта. Создание сетки конечных элементов. Создание расчетной модели. Задание нагрузок и граничных условий. Численное решение задачи и анализ полученных результатов.	43	1	2	0	40
		Итого	1	72	4	4	0	64

3.2. Содержание разделов дисциплины

3.2.1. Лекционные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Основные принципы и понятия	Основные принципы и понятия инженерного анализа: прочность конструкций, напряженно-	2

		инженерного анализа	деформированное состояние, критерии разрушения. Использование численных методов при проектировании конструкций и машин.	
2	2.1	Численный инженерный анализ в среде САЕ.	Численный инженерный анализ в среде САЕ. Постановка задачи. Выбор одного из промышленных решателей: Nastran, ANSYS, LS-Dyna, ABAQUS и др. для выбранного типа анализа.	1
	2.2	Расчет модели с применением систем автоматизаци и инженерных расчётов.	Создание геометрической САD-модели. Создание идеализированной геометрической модели. Создание конечно-элементной модели. Задание физико-механических свойств объекта. Создание сетки конечных элементов. Создание расчетной модели. Задание нагрузок и граничных условий. Численное решение задачи и анализ полученных результатов.	1

3.2.2. Практические занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
2	2.1	Численный инженерный анализ в среде САЕ.	Численный инженерный анализ в среде САЕ. Постановка задачи. Выбор одного из промышленных решателей: Nastran, ANSYS, LS-Dyna, ABAQUS и др. для выбранного типа анализа.	2
	2.2	Расчет модели с применением систем автоматизаци и инженерных расчётов.	Создание геометрической САD-модели. Создание идеализированной геометрической модели. Создание конечно-элементной модели. Задание физико-механических свойств объекта. Создание сетки конечных элементов. Создание расчетной модели. Задание нагрузок и граничных условий. Численное решение задачи и анализ полученных результатов.	2

3.2.3. Лабораторные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)

3.3. Содержание материалов, выносимых на самостоятельное изучение

Модуль	Номер раздела	Содержание материалов, выносимого на самостоятельное изучение	Виды самостоятельной деятельности	Трудоемкость (в часах)
1	1.1	Основные принципы и понятия инженерного анализа.	Основные принципы и понятия инженерного анализа: прочность конструкций, напряженно-деформированное состояние, критерии разрушения. Использование численных методов при проектировании конструкций и машин.	4
2	2.1	Численный инженерный анализ в среде САЕ.	Численный инженерный анализ в среде САЕ. Постановка задачи. Выбор одного из промышленных решателей: Nastran, ANSYS, LS-Dyna, ABAQUS и др. для выбранного типа анализа.	20
	2.2	Расчет модели с применением систем автоматизации инженерных расчётов.	Создание геометрической САD-модели. Создание идеализированной геометрической модели. Создание конечно-элементной модели. Задание физикомеханических свойств объекта. Создание сетки конечных элементов. Создание расчетной модели. Задание нагрузок и граничных условий.	40

	Численное решение	
	задачи и анализ	
	полученных результатов.	

4. Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств текущего контроля и промежуточной аттестации по итогам освоения дисциплины представлен в приложении.

Фонд оценочных средств

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

5.1.1. Печатные издания

1. 1. Норенков, И.П. Основы автоматизированного проектирования : учебник. – 2-е изд., перераб. и доп. – М. : Изд-во МГТУ им. Н.Э. Бау мана, 2002. – 336 с. 2. Колдаев, В.Д. Численные методы и программирование: учеб- ное пособие / В.Д. Колдаев; под ред. Л.Г. Гагариной. – М. : ИД «ФО- РУМ»: ИНФА-М, 2009. – 544 с.

5.1.2. Издания из ЭБС

1. Основы автоматизированного проектирования : учебник / под ред. А. П. Карпенко. — Москва : ИНФРА-М, 2020. — 329 с., [16] с. цв. ил. — (Высшее образование: Бакалавриат). - ISBN 978-5-16-010213-9. - Текст : электронный. - URL: https://znanium.com/catalog/product/1059303

5.2. Дополнительная литература

5.2.1. Печатные издания

1. 1. Басов, К.А. ANSYS для конструкторов / К.А. Басов. – М.: ДМК Пресс, 2009. – 248 с. 2. Гончаров, П.С. NX Advanced Simulation. Инженерный анализ / П.С. Гончаров, И.А. Артамонов, Т.Ф. Халитов, С.В. Денисихин, Д.Е. Сотник. – М.: ДМК Пресс, 2012. – 504 с. 3. Данилов, Ю.В. Практическое использование NX / Ю.В. Дани- лов, И.А. Артамонов. – М.: ДМК Пресс, 2011. – 332 с.

5.2.2. Издания из ЭБС

1. 2. Бутко, А. О. Основы моделирования в САПР NX [Электронный ресурс]:Учебное пособие / А.О.Бутко, В.А.Прудников, Г.А.Цырков, 2-е изд. - М.:НИЦ ИНФРА-М, 2016. - 199 с. // ZNANIUM.COM : электронно-библиотечная система. – Режим доступа: http://www.znanium.com/catalog.php,

5.3. Базы данных, информационно-справочные и поисковые системы

Название	Ссылка
ansys	https://www.ansys.com/
NX	https://www.tadviser.ru/index.php/%D0%9F%D1%80%D0%BE%D0%B4%D1%83%D0%BA%D1%82:Siemens_NX

6. Перечень программного обеспечения

Программное обеспечение общего назначения: ОС Microsoft Windows, Microsoft Office, ABBYY FineReader, ESET NOD32 Smart Security Business Edition, Foxit Reader, АИБС "МегаПро".

Программное обеспечение специального назначения:

1) Аскон Компас-3D V15 Проектирование и конструирование в машиностроении

7. Материально-техническое обеспечение дисциплины

Наименование помещений для проведения учебных занятий и для самостоятельной работы обучающихся	Оснащенность специальных помещений и помещений для самостоятельной работы
Учебные аудитории для проведения занятий лекционного типа	Состав оборудования и технических средств обучения указан в паспорте аудитории, закрепленной расписанием по факультету
Учебные аудитории для проведения практических занятий	
Учебные аудитории для промежуточной аттестации	
Учебные аудитории для текущей аттестации	Состав оборудования и технических средств обучения указан в паспорте аудитории, закрепленной расписанием по кафедре

8. Методические рекомендации по организации изучения дисциплины

При изучении дисциплины студент должен выполнить следующие виды самостоятельной работы: проработка разделов теоретического курса и подготовка к зачету . Изучение разделов рекомендуется осуществлять в следующем порядке:

Ознакомительное чтение материалов по конкретному разделу с определением его взаимосвязи с информацией других разделов, выделение главного приоритетного материала, запись выбранного материала. Стиль текста – технический. При подготовке к сдаче зачета изучается основная и дополнительная литература и материалы практических занятий.

Разработчик/группа разработ	чиков:	
Александр Ильич Хоботов		
•		
Типовая программа утвер	ждена	
Согласована с выпускающей	кафедрой	
Заведующий кафедрой		
	20	_г.