МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Забайкальский государственный университет» (ФГБОУ ВО «ЗабГУ»)

Энергетический факультет	
Кафедра Энергетики	УТВЕРЖДАЮ:
	Декан факультета
	Энергетический факультет
	Батухтин Андрей Геннадьевич
	«»20 г.
РАБОЧАЯ ПРОГРАММА ДИСЦИ	ПЛИНЫ (МОДУЛЯ)
Б1.В.06 Основы физической химин на 180 часа(ов), 5 зачетных (для направления подготовки (специальности) 13.03.	ые) единиц(ы)
составлена в соответствии с ФГОС ВО, у Министерства образования и науки Ро «» 20	ссийской Федерации от
Профиль – Тепловые электрические станции (для нас Форма обучения: Очная	бора 2024)

1. Организационно-методический раздел

1.1 Цели и задачи дисциплины (модуля)

Цель изучения дисциплины:

Формирование у студентов базовых знаний в области теории и практики химического анализа технологической воды и топлива. Развитие инженерного мышления в технологии очистки воды от различных примесей и обеспечение нормативных показателей качества воды в процессе эксплуатации ее на электростанциях.

Задачи изучения дисциплины:

в процессе изучения студенты, должны овладеть знаниями о пробоотборах и пробоподготовка. Качественный анализ технологической воды. Количественный анализ воды. Титриметрический анализ (объемный анализ). Окислительно-восстановительное титрование. Комплексонометрический метод анализа. Осадительное титрование. Химические методы анализа отложений. Физико-химические методы анализа. Технический анализ твердого и жидкого топлива. Значение водоподготовки на ТЭС. Примеси природных вод. Классификация и характеристика вод и их примесей. Показатели качества чистой воды. Использование водного теплоносителя и его потери в теплоэнергетических и промэнергетических установках различных типов. Основные требования к качеству контурных и добавочных вод парогенерирующих и охлаждающих систем. Нормативные показатели. Классификация основных технологических процессов обработки вод. Технология и аппараты предварительной очистки воды. Разновидности конструкций испарителей и принцип их работы. Технология очистки воды с использованием физикохимических процессов, отличных от ионообменных термических процессов. Образование отложений в паровых котлах, фосфатирование и щелочение котловой воды. Водный режим паровых котлов, пароводяной баланс котлов. Ступенчатое испарение. Коррозия основного оборудования котлов и способы ее предотвращения.

1.2. Место дисциплины (модуля) в структуре ОП

Дисциплина «Основы физической химии и водоподготовка» входит в Блок 1, часть, формируемая участниками образовательных отношений, «Дисциплины (модули)» программы бакалавриата в соответствии с ФГОС 3+ относится к базовым дисциплинам, обязательным для изучения студентами, обучающихся по направлению 13.03.01 Теплоэнергетика и теплотехника. «Основы физической химии и водоподготовка» является специальной дисциплиной, относится к базовой части профессионального цикла дисциплин. Курс предполагает, что студенты получили предварительно необходимую теоретическую и практическую подготовку при изучении основных теплоэнергетических дисциплин: «Техническая термодинамика», «Тепломассообмен», «Гидрогазодинамика». В результате изучения дисциплины приобретаются навыки и знания, на основании которых можно квалифицировать различные водоисточники, оптимально выбрать необходимую технологию подготовки воды для различных нужд ТЭС и АЭС, рассчитать и выбрать основное оборудование ВПУ, рекомендовать использование различных химических реагентов для коррекции водного режима.

1.3. Объем дисциплины (модуля) с указанием трудоемкости всех видов учебной работы

Общая трудоемкость дисциплины (модуля) составляет 5 зачетных(ые) единиц(ы), 180 насов.

Виды занятий	Семестр 5	Семестр 6	Всего часов
Общая трудоемкость			180
Аудиторные занятия, в т.ч.	34	32	66
Лекционные (ЛК)	17	16	33
Практические (семинарские) (ПЗ, CЗ)	17	0	17
Лабораторные (ЛР)	0	16	16
Самостоятельная работа студентов (СРС)	38	40	78
Форма промежуточной аттестации в семестре	Зачет	Экзамен	36
Курсовая работа (курсовой проект) (КР, КП)			

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые рез	вультаты освоения образовательной программы	Планируемые результаты обучения по дисциплине
Код и наименование компетенции	Индикаторы достижения компетенции, формируемые в рамках дисциплины	Дескрипторы: знания, умения, навыки и (или) опыт деятельности
ПК-1	Способен принимать и обосновывать конкретные технические решения при разработке ОПД, их элементов и систем	Знать: Элементы и системы ТЭЦ Уметь: обосновывать конкретные технические решения

		Владеть: различными способами разработки схем в соответствии с технологией производства
ПК-1	Соблюдает правила технологической дисциплины при эксплуатации ОПД	Знать: правила и технологии эксплуатации Уметь: анализировать нормативные документы Владеть: методиками применения правил технологической дисциплины при эксплуатации
ПК-5	Демонстрирует знание требований НТД при проектировании ОПД, их элементов и систем	Знать: требования НТД для проектирования ОПД, из элементов и систем Уметь:: анализировать требования НТД Владеть: методами анализа данных при использовании НТД.
ПК-5	Разрабатывает и оформляет законченные проектно-конструкторские работы по проектированию ОПД, их элементов и систем	Знать: современные технологии, материалы и оборудование для разработки проектов ОПД, их элементов и систем Уметь: анализировать различные источники, в т.ч. нормативные документы

	Владеть: методами разработки и оформления проектно-конструкторских работ

3. Содержание дисциплины

3.1. Разделы дисциплины и виды занятий

3.1 Структура дисциплины для очной формы обучения

Модуль	Номер раздела	Наименование раздела	Темы раздела	Всего часов		п анятт 3 (С 3)		C P C
1	1.1	Введение. Свойства воды. Правила ТБ и ПБ	Введение. Вода на электростанции и котельной. Виды и свойства воды: атмосферная, поверхностная, грунтовая. Показатели качества воды для ТЭС. Отбор проб. Правила ТБ и ПБ	16	8	2	6	0
	1.2	Требования к качеству питательной воды и пару, применяемым на ТЭС и АЭС в зависимости от уровня параметров и назначения	Требования к качеству питательной воды и пару, применяемым на ТЭС и АЭС в зависимости от уровня параметров и назначения	18	9	4	0	5
	1.3	Способы и методы подготовки питательной и сетевой воды	Способы и методы подготовки питательной и сетевой воды	19	8	6	0	5
	1.4	Конструкция аппаратов для	Конструкция аппаратов для очистки воды,	19	9	5	0	5

	очистки воды, принципы их работы и условия эксплуатации	принципы их работы и условия эксплуатации					
1.5	Методы и способы поддержания качества питательной воды и пара котельных агрегатов и па рогенераторов в процессе эксплуатации	Методы и способы поддержания качества питательной воды и пара котельных агрегатов и парогенераторов в процессе эксплуатации	27	5	0	8	14
1.6	Поддержание водно- химических режимов	Поддержание водно- химических режимов	24	6	0	4	14
1.7	Анализ нефте продуктов и твердого топлива	Анализ нефтепродуктов и твердого топлива	21	5	0	4	12
	Итого		144	50	17	22	55

3.2. Содержание разделов дисциплины

3.2.1. Лекционные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Введение. Отбор проб. Правила ТБ и ПБ	Введение. Отбор проб различных объектов контроля Объекты анализа: исходная вода, осветленная вода, обессоленная вода, конденсат турбин, конденсат сетевых подогревателей, котловая вода, пар; топливо	8
	1.1	Требования к качеству питательной воды и пару, применяемым на ТЭС и АЭС	Значение водоподготовки на ТЭС. Примеси природных вод. Классификация и характеристика вод и их примесей. Показатели качества чистой воды. Использование водного теплоносителя и его потери в	9

в зависимости от уровня параметров и назначения	теплоэнергетических и промэнергетических установках различных типов. Основные требования к качеству контурных и добавочных вод парогенерирующих и охлаждающих систем. Нормативные показатели. Классификация основных технологических процессов обработки вод. Технология и аппараты предварительной очистки воды. Физико-химические процессы, протекающие при коагуляции коллоидных примесей воды. Оптимизация процесса.	
Способы и методы подготовки питательной и сетевой воды	Известкование воды, технологическая схема, изменение показателей качества воды при известковании. Минеральное обескремнивание воды, технологическая схема, изменение показателей качества воды. Механизмы задержания частиц в зернистых слоях. Адгезионное и пленочное фильтрование. Требования, предъявляемые к материалам намывных и насыпных фильтров Конструкции механических фильтров, условия их эксплуатации. Технология ионообменной очистки природных и контурных вод. Строение ионообменных материалов. Основные закономерности ионного обмена. Технология Nакатионирования. Особенности противоточной и двухступенчатой регенерации. Технология Н-катионирования. Характеристика стоков катионитных фильтров. Технологические схемы Н-Nакатионирования. Процессы, протекающие в анионитах, режимы их регенерации. Принципиальные схемы химического обессоливания. ФСД, схемы регенерации. Технология обработки высокоминерализированных природных и сбросных вод. Схемы и принципы действия испарительных и	

		выпарных установок различного типа. Принцип обратного осмоса. Свойства мембран и их характеристика. Схемы обратноосмотических аппаратов	
1.1	Конструкция аппаратов для очистки воды, принципы их работы и условия эксплуатации	Конструкция аппаратов для очистки воды, принципы их работы и условия эксплуатации Разновидности конструкций и принцип работы осветлителей, механических фильтров, ионообменных фильтров, схемы их включения, применяемые для котлов и парогенераторов различной мощности, ионообменные материалы, их зарубежные аналоги. Конструкция деаэраторов и декарбонизаторов. Разновидности конструкций испарителей и принцип их работы.	9
1.1	Методы и способы поддержания качества питательной воды и пара котельных агрегатов и па рогенераторов в процессе эксплуатации	Технология очистки воды с использованием физико-химических процессов, отличных от ионообменных термических процессов. Процессы абсорбции и десорбции газов. Химическое связывание растворенных газов. Применение окислителей для борьбы с биологическим обрастанием теплообменников. Стабилизационная обработка воды: баланс потоков и солей жесткости в замкнутых системах охлаждения, технология стабилизации воды подкислением, фосфатированием, комбинированными способами	5
1.1	Поддержание водно- химических режимов	Образование отложений в паровых котлах, фосфатирование и щелочение котловой воды. Водный режим паровых котлов, пароводяной баланс котлов. Ступенчатое испарение. Коррозия основного оборудования котлов и способы ее предотвращения	6
1.1	Анализ нефте продуктов и твердого топлива	Нефтепродукты и топливо. Технический анализ жидкого и твердого топлива, методы отбора проб	5

3.2.2. Практические занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Введение. Отбор проб. Правила ТБ и ПБ	ТБ и ПБ. Введение в предмет Отбор проб объектов контроля	2
	1.1	Требования к качеству питательной воды и пару, применяемым на ТЭС и АЭС в зависимости от уровня параметров и назначения	Качественный анализ воды. Открытие катионов и анионов Количественный анализ воды. Определение кислотности и щелочности воды Определение агрессивности и окисляемости воды	4
	1.1	Способы и методы подготовки питательной и сетевой воды	Комплексонометрическое определение жесткости воды Определение железа (П) и железа (III). Химический анализ отложений с поверхности нагрева котлов	6
	1.1	Конструкция аппаратов для очистки воды, принципы их работы и условия эксплуатации	Расчет аппаратов для очистки воды, при различном качестве исходной воды	5

3.2.3. Лабораторные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Методы и способы поддержания качества питательной воды и пара котельных агрегатов и па рогенераторов	Водоприготовительная установка для подпитки котлов Читинской ТЭЦ-1. Коагулирование воды. Известкование воды. Минеральное обескремнивание	8

	в процессе эксплуатации Водоприготов ительная установка для подпитки котлов Читинской ТЭЦ-1. Коагу лирование воды. Известковани е воды. Минеральное обескремнива ние		
1.1	Поддержание водно- химических режимов	Водоприготовительная установка для подпитки теплосети Читинской ТЭЦ-1	4
1.1	Анализ нефте продуктов и твердого топлива	Расчет водоприготовительной установки и системы топливоподачи с применением ЭВМ	4

3.3. Содержание материалов, выносимых на самостоятельное изучение

Модуль	Номер раздела	Содержание материалов, выносимого на самостоятельное изучение	Виды самостоятельной деятельности	Трудоемкость (в часах)

4. Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств текущего контроля и промежуточной аттестации по итогам освоения дисциплины представлен в приложении.

Фонд оценочных средств

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

5.1.1. Печатные издания

1. 1. Вихрев, Василий Федорович. Водоподготовка: учебник для вузов / Вихрев Василий Федорович, Шкроб Михаил Самойлович; под ред. М.С. Шкроба. - 2-е изд., перераб. и доп. - Москва: Энергия, 1973. - 416с.: ил. - 0-95. 2. Копылов, Анатолий Сергеевич. Водоподготовка в энергетике: учеб. пособие / Копылов Анатолий Сергеевич, Лавыгин Василий Михайлович, Очков Валерий Федорович. - 2-е изд., стер. — Москва: МЭИ, 2006. - 309 с.: ил. - ISBN 5-903072-45-3: 654-00. 3. Ахмылова, Марина Александровна. Водоподготовка: учеб. пособие / Ахмылова Марина Александровна, Иванов Сергей Анатольевич. - Чита: ЧитГУ, 2005. - 191 с. - 93-50. 4. Стерман, Лев Самойлович. Физические и химические методы обработки воды на ТЭС: учебник / Стерман Лев Самойлович, Покровский Вадим Николаевич. - Москва: Энергоатомиздат, 1991. - 328с.: ил. - 1-00.

5.1.2. Издания из ЭБС

1. Апарнев, А. И. Общая и неорганическая химия. Лабораторный практикум: учебное пособие для вузов / А. И. Апарнев, А. А. Казакова, Л. В. Шевницына. — 2-е изд., испр. и доп. — М.: Издательство Юрайт, 2018. — 160 с. — (Серия: Университеты России). — ISBN 978-5-534-04608-3. — www.biblio-online.ru/book/A8E1FDFD-F6DC-44BC-ADB7-123BBD2A2908. 5. Физико-химическая оценка качества и водоподготовка природных вод [Электронный ресурс] / Л.С. Григорьева. - М.: Издательство АСВ, 2011. - http://www.studentlibrary.ru/book/ISBN978593093802

5.2. Дополнительная литература

5.2.1. Печатные издания

1. Апарнев, А. И. Общая и неорганическая химия. Лабораторный практикум: учебное пособие для вузов / А. И. Апарнев, А. А. Казакова, Л. В. Шевницына. — 2-е изд., испр. и доп. — М.: Издательство Юрайт, 2018. — 160 с. — (Серия: Университеты России). — ISBN 978-5-534-04608-3. — www.biblio-online.ru/book/A8E1FDFD-F6DC-44BC-ADB7-123BBD2A2908. 5. Физико-химическая оценка качества и водоподготовка природных вод [Электронный ресурс] / Л.С. Григорьева. - М.: Издательство АСВ, 2011. - http://www.studentlibrary.ru/book/ISBN978593093802

5.2.2. Издания из ЭБС

1.

5.3. Базы данных, информационно-справочные и поисковые системы

Название Ссылка

6. Перечень программного обеспечения

Программное обеспечение общего назначения: ОС Microsoft Windows, Microsoft Office, ABBYY FineReader, ESET NOD32 Smart Security Business Edition, Foxit Reader, АИБС "МегаПро".

7. Материально-техническое обеспечение дисциплины

Наименование помещений для проведения учебных занятий и для самостоятельной работы обучающихся	Оснащенность специальных помещений и помещений для самостоятельной работы
Учебные аудитории для проведения занятий лекционного типа	Состав оборудования и технических средств обучения указан в паспорте аудитории, закрепленной расписанием по факультету
Учебные аудитории для проведения практических занятий	
Учебные аудитории для проведения лабораторных занятий	
Учебные аудитории для промежуточной аттестации	
Учебные аудитории для текущей аттестации	Состав оборудования и технических средств обучения указан в паспорте аудитории, закрепленной расписанием по кафедре

8. Методические рекомендации по организации изучения дисциплины

Для эффективного освоения материала дисциплины необходимым является выполнение следующих требований:

- обязательное посещение всех лекционных занятий, способствующее системному овладению материалом курса;
- все вопросы соответствующих разделов и тем по дисциплине необходимо фиксировать (на любых носителях информации);
- обязательное самостоятельное выполнение домашних заданий является важнейшим требованием и условием формирования целостного и системного знания по дисциплине;
- обязательность личной активности каждого студента на всех занятиях по дисциплине;
- в случаях неясности каких-либо вопросов, обсуждаемых на занятиях, необходимо задать соответствующие вопросы преподавателю, а не оставлять их непонятыми;
- в случаях пропусков занятий по уважительным причинам студентам предоставляется право подготовки и представления заданий и ответов на вопросы изученного материала, с расчетом на помощь преподавателя в его усвоении;
- в случаях пропусков без уважительной причины студент обязан самостоятельно изучить соответствующий материал;
- необходимым условием является самостоятельность и инициативность студентов при контроле набора баллов по дисциплине для успешного прохождения промежуточной аттестации.

Для эффективного освоения материала дисциплины в ходе практических занятий необходимо выполнение следующих требований:

- четко понимать цели предстоящих занятий (предварительно формулируются преподавателем):

- владеть навыками поиска, обработки, адаптации и презентации необходимого материала;
- уметь четко формулировать и отстаивать собственный взгляд на рассматриваемые проблемные вопросы, который необходимо подкреплять адекватной аргументацией;
- уметь выделять и формулировать противоречия по рассматриваемым проблемам, понимая их источники;
- владеть навыками публичного выступления (логично, ясно и лаконично излагать свои мысли; адекватно оценивать восприятие и понимание слушателями представляемого материала; отвечать на задаваемые вопросы; приводить адекватные и убедительные аргументы в защиту своей позиции и т.д.);
- уметь критически оценивать собственные знания, умения и навыки в динамике в сравнении с таковыми у других, с целью раскрытия дополнительных возможностей их развития;
- при подготовке к занятиям обязательно изучить рекомендуемую литературу;
- оценить различные точки зрения на проблемные вопросы нескольких исследователей, а не ограничиваться рассмотрением позиции одного автора;
- при формулировке собственной точки зрения предусмотреть убедительную ее аргументацию и возможность возникновения спорных ситуаций;
- владеть навыками работы в команде (при выполнении определенных заданий, предполагающих работу в микрогруппах, при проведении ролевых игр, дискуссий и т.д.). Порядок организации самостоятельной работы студентов

Самостоятельная работа студентов предполагает:

- самостоятельный поиск, обработку (анализ, синтез, обобщение и систематизацию), адаптацию необходимой по дисциплине информации;
- выполнение заданий для самостоятельной работы;
- изучение и усвоение теоретического материала, представленного на лекционных занятиях и в соответствующих литературных источниках (рекомендуемая основная и дополнительная литература);
- самостоятельное изучение отдельных вопросов курса;
- подготовка к практическим и семинарским занятиям, в соответствии с рекомендациями преподавателя (выполнение конкретных заданий, соответствующие

Разработчик/группа разработчиков: Марина Александровна Морозова

Типовая программа утверждена

Согласована с выпускающей кафедрой Заведующий кафедрой _____ «___»_____20____г.