МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Забайкальский государственный университет» (ФГБОУ ВО «ЗабГУ»)

Энергетический факультет Кафедра Информатики, вычислительной техники и при	икладной математики УТВЕРЖДАЮ:
	Декан факультета
	Энергетический факультет
	Батухтин Андрей Геннадьевич
	«»20 г.
	1.
РАБОЧАЯ ПРОГРАММА ДИСЦИП	ЛИНЫ (МОДУЛЯ)
Б1.В.07 Математическая логика и тес на 144 часа(ов), 4 зачетных(ые) для направления подготовки (специальности) 09.03.01 техника	единиц(ы)
составлена в соответствии с ФГОС ВО, утв Министерства образования и науки Росси «» 20 г. 1	ийской Федерации от
Профиль – Программное обеспечение вычислительной систем (для набора 2021) Форма обучения: Очная	техники и автоматизированных

1. Организационно-методический раздел

1.1 Цели и задачи дисциплины (модуля)

Цель изучения дисциплины:

сформировать у студентов знания об основных объектах, структурах и задачах, и результатах исследования математической логики и теории алгоритмов; выработать у студентов методы работы с формальными аксиоматическими теориями, основными алгоритмическими моделями вычислимости, примерами их применения в различных моделях информационных систем и технологий; сформировать у студентов логическую и алгоритмическую интуицию как в математике, так и в информатике

Задачи изучения дисциплины:

развитие у студентов профессиональных компетенций, формирование систематизированных знаний, умений и навыков в области математической логики и теории алгоритмов и её основных методов, позволяющих подготовить конкурентоспособного выпускника для сферы образования, готового к инновационной творческой реализации в образовательных учреждениях различного уровня и профиля.

1.2. Место дисциплины (модуля) в структуре ОП

Дисциплина «Математическая логика и теория алгоритмов» является частью блока, формируемого участниками образовательных отношений Б1.В.07. Для успешного освоения дисциплины «Математическая логика и теория алгоритмов» студент должен иметь базовую подготовку по дисциплине «Математика» в объеме программы средней школы, а также подготовку по дисциплинам блока Б1 «Линейная алгебра и аналитическая геометрия», «Математический анализ», «Информатика», и по дисциплинам блока Б1.В «Дискретная аналитической математика» «Специальные главы геометрии». «Математическая логика и теория алгоритмов» обеспечивает расширенное взаимодействие между учебными программами дисциплин учебного плана и учебной программой по данной дисциплине. Основными принципами являются непрерывность и системность образования, а также ранняя профессиональная ориентация. Дисциплина «Математическая логика и теория алгоритмов» позволяет развивать логическое мышление. Кроме того, навыки, полученные при изучении указанных разделов, применяются во многих дисциплинах. Дисциплина «Математическая логика и теория алгоритмов» изучается студентами очной формы обучения на втором курсе в третьем семестре.

1.3. Объем дисциплины (модуля) с указанием трудоемкости всех видов учебной работы

Общая трудоемкость дисциплины (модуля) составляет 4 зачетных(ые) единиц(ы), 144 часов.

Виды занятий	Семестр 3	Всего часов
Общая трудоемкость		144

Аудиторные занятия, в т.ч.	51	51
Лекционные (ЛК)	34	34
Практические (семинарские) (ПЗ, СЗ)	17	17
Лабораторные (ЛР)	0	0
Самостоятельная работа студентов (СРС)	57	57
Форма промежуточной аттестации в семестре	Экзамен	36
Курсовая работа (курсовой проект) (КР, КП)		

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые рез	вультаты освоения образовательной программы	Планируемые результаты обучения по дисциплине
Код и наименование компетенции	Индикаторы достижения компетенции, формируемые в рамках дисциплины	Дескрипторы: знания, умения, навыки и (или) опыт деятельности
ОПК-1	ОПК-1.1. Знать: основы высшей математики, физики, основы вычислительной техники и программирования	Знать: законы логической равносильности; компоненты (аксиомы и правила вывода) и характеристики (свойства) исчислений высказываний и важнейших теорий первого порядка; результаты о непротиворечивости и независимости в арифметике и теории множеств; методы математической логики для изучения математических доказательств и теорий. основные черты алгоритмов, основные понятия нечеткой логики
ОПК-1	ОПК-1.2. Уметь: решать стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и	Уметь: распознавать тождественно истинные (простейшие общезначимые) формулы языка логики высказываний (предикатов); применять средства языка логики предикатов для

	моделирования.	записи и анализа математических предложений; строить простейшие выводы (в виде дерева) в исчислениях высказываний и использовать эти модели для объяснения сути и строения математических доказательств
ОПК-1	ОПК-1.3. Иметь навыки: теоретического и экспериментального исследования объектов профессиональной деятельности.	Владеть: техникой равносильных преобразований логических формул; методами распознавания тождественно истинных формул и равносильных формул; дедуктивным аппаратом изучаемых логических исчислений, синтезом и анализом логических схем, методами минимизации булевых функций.

3. Содержание дисциплины

3.1. Разделы дисциплины и виды занятий

3.1 Структура дисциплины для очной формы обучения

Модуль	Номер раздела	Наименование раздела	Темы раздела	Всего часов		цитор анят		C P
					Л К	П 3 (С 3)	Л Р	С
1	1.1	Алгебра высказывании	Высказывания. Формулы и функции алгебры логики.	13	4	2	0	7
	1.2	Формы представления высказываний	Нормальные и совершенные формы представления высказываний	13	4	2	0	7
2	2.1	Минимизация булевых функций	Методы и алгоритмы нахождения минимальных форм	13	4	2	0	7
	2.2	Логические схемы компьютера	Анализ и синтез логических схем компьютера	13	4	2	0	7
3	3.1	Полнота	Базис Жегалкина.	13	4	2	0	7

		системы булевых функций	Классы Поста					
	3.2	Исчисление высказываний	Методы исчислений высказываний	13	4	2	0	7
4	4.1	Теория предикатов	Алгебра и исчисление предикатов	11	4	2	0	5
5	5.1	Теория алгоритмов	Основные понятия алгоритмов. Характеристики сложности алгоритмов	11	4	2	0	5
6	6.1	Элементы нечеткой логики	Основные понятия нечеткой логики.	8	2	1	0	5
	-	Итого		108	34	17	0	57

3.2. Содержание разделов дисциплины

3.2.1. Лекционные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Высказывания . Формулы и функции алгебры логики.	Историческая справка. Понятие высказывания. Простое и составное высказывание. Логические выражения и логические операции над высказываниями Формулы алгебры логики. Функции алгебры логики.	4
	1.2	Нормальные и совершенные формы представления высказываний	Дизъюнктивные и конъюнктивные нормальные формы ДНФ, КНФ. Алгоритмы приведения формулы к ДНФ, КНФ Совершенные нормальные формы СДНФ, СКНФ. Алгоритмы приведения формулы к СДНФ, СКНФ.	4
2	2.1	Методы и алгоритмы нахождения минимальных форм	Основные понятия. Минимизация ФАЛ методом равносильных преобразований. Метод неопределенных коэффициентов. Многомерный куб Карты Карно. Метод Квайна. Метод Мак-Класски (алгебраический метод)	4

	2.2	Анализ и синтез логических схем компьютера	Основные понятия. Логические элементы И, ИЛИ, НЕ, И–НЕ, ИЛИ–НЕ. Декомпозиционная схема. Переключательная схема. Комбинационная схема. Синтез и анализ логических схем	4
3	3.1	Базис Жегалкина. Классы Поста	Принцип двойственности. Полнота системы булевых функций. Классы Поста. Теорема Поста. Базис. Функциональная декомпозиция.	4
	3.2	Методы исчислений высказываний	Исчисление высказываний. Критерий выводимости в исчислении высказываний Непротиворечивость исчисления высказываний	4
4	4.1	Алгебра и исчисление предикатов	Алгебра предикатов. Исчисление предикатов. Интерпретация Основные равносильности для предикатов. Приведенная форма представления предикатов	4
5	5.1	Основные понятия алгоритмов. X арактеристики сложности алгоритмов	Интуитивное понятие алгоритма. Конкретизация понятия алгоритма. Машины Тьюринга. Рекурсивные функции. Нормальные алгоритмы Маркова Алгоритмически неразрешимые проблемы. Проблема самоприменимости. Нумерация МТ. Самоприменимость МТ. Проблема остановки. Разрешимые и неразрешимые задачи математики Характеристики сложности вычислений. Классы сложности задач. Р задачи. NP задачи	4
6	6.1	Основные понятия нечеткой логики.	Понятие характеристической функции и нечеткого множества Практические задачи, приводящие к нечетким множествам	2

3.2.2. Практические занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Высказывания . Формулы и функции	Историческая справка. Понятие высказывания. Простое и составное высказывание. Логические	2

		алгебры логики.	выражения и логические операции над высказываниями Формулы алгебры логики. Функции алгебры логики.	
	1.2	Нормальные и совершенные формы представления высказываний	Дизъюнктивные и конъюнктивные нормальные формы ДНФ, КНФ. Алгоритмы приведения формулы к ДНФ, КНФ Совершенные нормальные формы СДНФ, СКНФ. Алгоритмы приведения формулы к СДНФ, СКНФ.	2
2	2.1	Методы и алгоритмы нахождения минимальных форм	Минимизация ФАЛ методом равносильных преобразований. Метод неопределенных коэффициентов. Многомерный куб Карты Карно. Метод Квайна. Метод Мак-Класски (алгебраический метод)	2
	2.2	Анализ и синтез логических схем компьютера	Логические элементы И, ИЛИ, НЕ, И–НЕ, ИЛИ– НЕ. Декомпозиционная схема. Переключательная схема. Комбинационная схема. Синтез и анализ логических схем	2
3	3.1	Базис Жегалкина. Классы Поста	Принцип двойственности. Полнота системы булевых функций. Классы Поста. Теорема Поста. Базис. Функциональная декомпозиция.	2
	3.2	Методы исчислений высказываний	Исчисление высказываний. Критерий выводимости в исчислении высказываний Непротиворечивость исчисления высказываний	2
4	4.1	Алгебра и исчисление предикатов	Алгебра предикатов. Исчисление предикатов. Интерпретация Основные равносильности для предикатов. Приведенная форма представления предикатов	2
5	5.1	Основные понятия алгоритмов. X арактеристики сложности алгоритмов	Машины Тьюринга. Рекурсивные функции. Нормальные алгоритмы Маркова Алгоритмически неразрешимые проблемы. Проблема самоприменимости. Нумерация МТ. Самоприменимость МТ. Проблема остановки. Разрешимые и неразрешимые задачи математики Характеристики сложности	2

			вычислений. Классы сложности задач. Р задачи. NP задачи	
6	6.1	Основные понятия нечеткой логики.	Понятие характеристической функции и нечеткого множества Практические задачи, приводящие к нечетким множествам	1

3.2.3. Лабораторные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)

3.3. Содержание материалов, выносимых на самостоятельное изучение

Модуль	Номер раздела	Содержание материалов, выносимого на самостоятельное изучение	Виды самостоятельной деятельности	Трудоемкость (в часах)
1	1.1	Высказывания. Формулы и функции алгебры логики.	Выполнение проектных заданий. Выполнение исследовательских заданий в индивидуальных и групповых формах;	7
	1.2	Нормальные и совершенные формы представления высказываний	Выполнение проектных заданий. Выполнение исследовательских заданий в индивидуальных и групповых формах;	7
2	2.1	Методы и алгоритмы нахождения минимальных форм	Выполнение проектных заданий. Выполнение исследовательских заданий в индивидуальных и групповых формах;	7
	2.2	Анализ и синтез логических схем компьютера	Выполнение проектных заданий. Выполнение исследовательских заданий в индивидуальных и групповых формах;	7
3	3.1	Базис Жегалкина. Классы Поста	Выполнение проектных заданий. Выполнение исследовательских заданий в индивидуальных	7

			и групповых формах;	
	3.2	Методы исчислений высказываний	Выполнение проектных заданий. Выполнение исследовательских заданий в индивидуальных и групповых формах;	7
4	4.1	Алгебра и исчисление предикатов	Выполнение проектных заданий. Выполнение исследовательских заданий в индивидуальных и групповых формах;	5
5	5.1	Основные понятия алгоритмов. Характеристики сложности алгоритмов	Выполнение проектных заданий. Выполнение исследовательских заданий в индивидуальных и групповых формах;	5
6	6.1	Основные понятия нечеткой логики.	Выполнение проектных заданий.	5

4. Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств текущего контроля и промежуточной аттестации по итогам освоения дисциплины представлен в приложении.

Фонд оценочных средств

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

5.1.1. Печатные издания

- 1. Игошин В.И. Математическая логика и теория алгоритмов: учеб. пособие / В.И. Игошин. 3-е изд. стер. Москва: Академия, 2008. 448 с.
- 2. Игошин В.И. Задачи и упражнения по математической логике и теории алгоритмов: учеб. пособие/ В.И. Игошин. 4-е изд. стер. Москва: Академия, 2008. 304 с.
- 3. Лавров И.А. Математическая логика: учеб. пособие / под ред. Л.Л. Максимовой. Москва: Академия, 2006. 204 с.

5.1.2. Издания из ЭБС

1. Судоплатов С.В. Математическая логика и теория алгоритмов [Электронный ресурс]: учебник и практикум для академического бакалавриата / С.В. Судоплатов, Е.В. Овчиникова. – 5-е изд., стер. – Москва: Издательство Юрайт, 2016. – 255 с. – Режим

доступа: https://www.biblio-online.ru/viewer/71FA118B-CFD5-48BD-BC6F-073BDCA2806F#page/1.

2. Скорубский В.И. Математическая логика [Электронный ресурс]: учебник и практикум для академического бакалавриата / В.И. Скорубский, В.И. Поляков, А.Г. Зыков. – Москва: Издательство Юрайт, 2017. – 211 с. – Режим доступа: https://www.biblioonline.ru/viewer/1DCFB4A3-0E32-447B-B216-5FDE5657D5D3#page/1.

5.2. Дополнительная литература

5.2.1. Печатные издания

- 1. Глухов М.М. Математическая логика. Дискретные функции. Теория алгоритмов: учеб. пособие / М.М. Глухов, А.Б. Шишков. Санкт-Петербург: Лань, 2012. 416 с.: ил. (Учебники для вузов. Специальная лит.).
- 2. Розова Н.В. Дискретная математика. Линейная алгебра и геометрия: метод. указания и контрольные задания / Н.В. Розова, Г.Н. Линькова. Чита: ЧитГУ, 1998. 124 с.

5.2.2. Издания из ЭБС

1. Крупский В.Н. Теория алгоритмов. Введение в сложность вычислений [Электронный ресурс]: учеб. пособие для бакалавриата и магистратуры / В.Н. Крупский. – 2-е изд., испр. и доп. – Москва: Издательство Юрайт, 2017. – 117 с. – (Серия: Авторский учебник). – ISBN 978-5-534-04817-9. – Режим доступа: www.biblio-online.ru/book/F55D893F-2F17-4BE9-988C-9B1B60BD43C1

5.3. Базы данных, информационно-справочные и поисковые системы

Название	Ссылка
Электронно-библиотечная система «Юрайт».	https://urait.ru/
ЭБС "Консультант студента"	https://www.studentlibrary.ru/
Электронно-библиотечная система «Издательство «Лань».	https://e.lanbook.com/
Федеральный портал «Российское образование».	http://www.edu.ru/
Электронная библиотека учебников	http://studentam.net/
Интернет-библиотека по математике.	http://ilib.mccme.ru/
EqWorld Учебная физико-математическая библиотека.	http://eqworld.ipmnet.ru/ru/library.htm
Math.ru - библиотека.	https://math.ru/lib/formats

6. Перечень программного обеспечения

Программное обеспечение общего назначения: OC Microsoft Windows, Microsoft Office, ABBYY FineReader, ESET NOD32 Smart Security Business Edition, Foxit Reader, АИБС "МегаПро".

Программное обеспечение специального назначения:

- 1) Mathematica Standart Version Education
- 2) PTC Mathcad Express
- 3) Машина Тьюринга

7. Материально-техническое обеспечение дисциплины

Наименование помещений для проведения учебных занятий и для самостоятельной работы обучающихся	Оснащенность специальных помещений и помещений для самостоятельной работы	
Учебные аудитории для проведения занятий лекционного типа	Состав оборудования и технических средств обучения указан в паспорте аудитории,	
Учебные аудитории для проведения практических занятий	закрепленной расписанием по факультету	
Учебные аудитории для промежуточной аттестации		
Учебные аудитории для проведения групповых и индивидуальных консультаций	Состав оборудования и технических средств обучения указан в паспорте аудитории,	
Учебные аудитории для текущей аттестации	закрепленной расписанием по кафедре	

8. Методические рекомендации по организации изучения дисциплины

В ходе лекционных занятий необходимо вести конспектирование учебного материала. Методические рекомендации по подготовке к практическим занятиям: Целью практических занятий является углубление и закрепление теоретических знаний, полученных студентами на лекциях и в процессе самостоятельного изучения учебного материала, а, следовательно, формирование у них определенных умений и навыков. В ходе подготовки к практическому занятию необходимо прочитать конспект лекции, изучить основную литературу, ознакомиться с дополнительной литературой, выполнить выданные преподавателем индивидуальные задания. При этом учесть рекомендации преподавателя и требования программы. Дорабатывать свой конспект лекции, делая в нем соответствующие записи из литературы. Желательно при подготовке к практическим занятиям по дисциплине одновременно использовать несколько источников, раскрывающих заданные вопросы. Методические рекомендации по организации самостоятельной работы:

Самостоятельная работа приводит студента к получению нового знания, упорядочению и углублению имеющихся знаний, формированию у него профессиональных навыков и умений. Самостоятельная работа выполняет ряд функций: развивающую; информационнообучающую; ориентирующую и стимулирующую; воспитывающую; исследовательскую. Это

и позволяет сформировать нужные компетенции в ходе изучения дисциплины. Студенту рекомендуется с самого начала освоения курса работать с литературой и предлагаемыми заданиями в форме подготовки к очередному аудиторному занятию. При этом актуализируются имеющиеся знания, а также создается база для усвоения нового материала, возникают вопросы, ответы на которые студент получает в аудитории. Можно отметить, что некоторые задания для самостоятельной работы по курсу имеют определенную специфику. При освоении курса студент может пользоваться библиотекой вуза, которая в полной мере обеспечена соответствующей литературой.

Евгения Семеновна Коган		
Типорад программа угрор	мано	
Типовая программа утвер	ждена	
Согласована с выпускающей	кафедрой	
Заведующий кафедрой		
	20	г.

Разработчик/группа разработчиков: