МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Забайкальский государственный университет» (ФГБОУ ВО «ЗабГУ»)

Ракультет естественных наук, математики и технологий	
афедра Физики	УТВЕРЖДАЮ:
	Декан факультета
	Факультет естественных наук, математики и технологий
	Токарева Юлия Сергеевна
	«»20

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.15 Физика на 252 часа(ов), 7 зачетных(ые) единиц(ы) для направления подготовки (специальности) 23.05.01 - Наземные транспортнотехнологические средства

составлена в соответс	твии с ФГОС ВО	, утвержденным приказом
Министерства образ	вования и науки Р	Российской Федерации от
« »	20	г. №

Профиль – Автомобильная техника в транспортных технологиях (для набора 2024) Форма обучения: Заочная

1. Организационно-методический раздел

1.1 Цели и задачи дисциплины (модуля)

Цель изучения дисциплины:

формирование у студентов представлений, понятий, знаний о наиболее общих закономерностях различных форм движения материи, как научном фундаменте построения специальных технических дисциплин и основе объективного изучения окружающего мира а также как составной части компетенций, которые должен приобрести студент в процессе обучения.

Задачи изучения дисциплины:

в процессе изучения "Физики" студенты должны овладеть знаниями физических явлений, фундаментальных понятий, законов и теорий классической и современной физики, уметь применять систему фундаментальных знаний для формулирования и решения технических и технологических проблем в области горного дела, выработать способность к абстрактному мышлению, анализу, синтезу а также использованию теоретических знаний при выполнении производственных, технологических и инженерных исследований в соответствии со специализацией.

1.2. Место дисциплины (модуля) в структуре ОП

Дисциплина «Физика» входит в Блок 1, обязательной части «Дисциплины (модули)» образовательной программы в соответствии с ФГОС 3++ и относится к базовым дисциплинам, обязательным для изучения студентами. Дисциплина «Физика» является базовой основой изучения общетехнических и специальных технических дисциплин: механика, электротехника и электроника, сопротивление материалов и др. Для успешного освоения дисциплины студенты должны иметь базовую подготовку по курсу физики в объеме программы общего среднего образования, а также по разделам высшей математики: векторная алгебра, дифференциальное и интегральное исчисления, дифференциальные уравнения, теория вероятности и математическая статистика.

1.3. Объем дисциплины (модуля) с указанием трудоемкости всех видов учебной работы

Общая трудоемкость дисциплины (модуля) составляет 7 зачетных(ые) единиц(ы), 252 часов.

Виды занятий	Семестр 1	Семестр 2	Всего часов
Общая трудоемкость			252
Аудиторные занятия, в т.ч.	12	12	24
Лекционные (ЛК)	4	4	8
Практические	4	4	8

(семинарские) (ПЗ, СЗ)			
Лабораторные (ЛР)	4	4	8
Самостоятельная работа студентов (СРС)	96	96	192
Форма промежуточной аттестации в семестре	Зачет	Экзамен	36
Курсовая работа (курсовой проект) (КР, КП)			

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые рез	вультаты освоения образовательной программы	Планируемые результаты обучения по дисциплине
Код и наименование компетенции	Индикаторы достижения компетенции, формируемые в рамках дисциплины	Дескрипторы: знания, умения, навыки и (или) опыт деятельности
УК-1	УК-1.1. Анализирует задачу, выделяя ее базовые составляющие, осуществляет декомпозицию задачи	Знать: способы, пути выделения проблемной ситуации в процессе анализа проблемы
		Уметь: определять этапы разрешения проблемы с учетом вариативных контекстов Владеть: приемами выявления
УК-1	УК-1.3. Рассматривает возможные варианты решения задачи, оценивая их достоинства и недостатки	проблемной ситуации Знать: теоретические основы системного подхода, понятие риска и классификацию рисков Уметь: анализировать проблемную ситуацию как систему, выявляя ее составляющие и связи между ними, определять варианты решения проблемных ситуаций,

		оценивать их преимущества и риски Владеть: приемами анализа вариантов решения проблем на основе системного подхода с учетом оценки их преимуществ и рисков
УК-6	УК-6.1. Применяет знание о своих ресурсах и их пределах (личностных, ситуативных, временных и т.д.), для успешного выполнения порученной работы	Знать: теоретикометодологические основы самооценки, саморазвития, самореализации Уметь: применять рефлексивные методы в процессе оценки разнообразных ресурсов, используемых для решения задач самоорганизации и саморазвития Владеть: приемами саморазвития и самореализации в профессиональной и других сферах деятельности
УК-6	УК-6.5. Демонстрирует интерес к учебе и использует предоставляемые возможности для приобретения новых знаний и навыков	Знать: основные виды профессионального образования, способы приобретения новых знаний и навыков с целью совершенствования своей деятельности Уметь: определять пути и механизмы совершенствования личностного и профессионального становления в соответствии с избранной сферой профессиональной деятельности Владеть: приемами демонстрации интереса к учебе, использования предоставленных возможностей для профессионального и личностного развития

3. Содержание дисциплины

3.1. Разделы дисциплины и виды занятий

3.1 Структура дисциплины для заочной формы обучения

Модуль	Номер раздела	Наименование раздела	Темы раздела	Всего часов	_	(итор аняті		C P
					Л К	П 3 (С 3)	Л Р	С
1	1.1	Механика	Классическая механика. Специальная теория относительности.	39	1	1	1	36
	1.2	Термодинами ка	Термодинамика. Молеку лярно-кинетическая теория.	42	2	2	2	36
2	2.1	Электростатик а. Магнитоста тика. Электро магнетизм.	Основные понятия. Поляризация. Электрическая ёмкость. Постоянный ток. Магнитные поля микротоков и макротоков. Электромагнитная индукция. Уравнения Максвелла	54	2	2	2	48
3	3.1	Колебания и волны. Оптика.	Гармонические колебания и их сложение. Упругие и электромагнитные волны. Геометрическая и волновая оптика.	42	2	2	2	36
	3.2	Квантовая физика. Ядерная физика. Элементарные частицы.	Квантовая оптика. Тепловое излучение. Квантовая механика. Атом водорода. Ядерная физика. Элементарные частицы.	39	1	1	1	36
		Итого		216	8	8	8	192

3.2. Содержание разделов дисциплины

3.2.1. Лекционные занятия, содержание и объем в часах

Модуль Номер Тема Содержание Трудоемкост
--

	раздела			(в часах)
1	1.1	Кинематика. Динамика. Специальная теория относи тельности	Скорость, ускорение при поступательном и вращательном движении. Динамика поступательного и вращательного движения. Законы сохранения. Силы трения и инерции. Энергия. Теория гравитации. Постулаты Эйнштейна. Преобразования Лоренца и следствия из них.	1
	1.2	Эксперимента льные газовые законы. Теплоёмкость. Первый закон термодинамик и. Молекуляр но-кинетическая теория	Экспериментальные газовые законы. Теплоёмкость. Первый закон термодинамики. Основное уравнение М.К.Т. Степени свободы молекулы. Энтропия. Второй закон термодинамики. Циклы	2
2	2.1	Напряжённост ь и потенциал электростатич еского поля. Поляризация. Электрическа я ёмкость.	Напряжённость и потенциал электростатического поля. Теорема Гаусса. Теорема о циркуляции вектора напряжённости. Поляризация диэлектриков. Электрическая ёмкость. Конденсаторы. Энергия электростатического поля.	1
	2.1	Постоянный ток.	Основные понятия. Законы Ома и Кирхгофа. Мощность. Закон Джоуля-Ленца.	1
	2.1	Магнитостати ка	Закон Био-Савара-Лапласа. Индукция и напряжённость магнитного поля. Закон Ампера. Сила Лоренца. Энергия поля.	1
	2.1	Электромагне тизм	Опыты Фарадея. Самоиндукция и взаимоиндукция. Уравнения Максвелла.	1
3	3.1	Колебания и волны	Гармонические колебания. Сложение колебаний. Упругие и электромагнитные волны. Интерференция.	1
	3.1	Оптика	Законы геометрической оптики. Дифракция. Поляризация.	1

	3.2	Тепловое излучение. Внешний фотоэффект. Основы квантовой механики. Атом водорода. Основы ядерной физики.	Законы Кирхгофа, Стефана Больцмана, Вина, Планка. Закон Эйнштейна для внешнего фотоэффекта. Гипотеза Де-Бройля, принцип неопределённости, уравнение Шредингера и его решения. Постулаты Бора. Сериальные формулы. Радиоактивное излучение. Ядерные реакции. Элементарные частицы.	1
8				

3.2.2. Практические занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Кинематика. Динамика пос тупательного и вращательног о движения. Энергия. Специальная теория относи тельности	Скорость, ускорение при поступательном и вращательном движении. Динамика поступательного и вращательного движения. Законы сохранения. Силы трения и инерции. Энергия. Теория гравитации. Постулаты Эйнштейна. Преобразования Лоренца и следствия из них.	1
	1.2	Эксперимента льные газовые законы. Теплоёмкость. Первый закон термодинамик и. Молекуляр но-кинетическая теория.	Экспериментальные газовые законы. Теплоёмкость. Первый закон термодинамики. Основное уравнение М.К.Т. Степени свободы молекулы. Энтропия. Второй закон термодинамики. Циклы.	2
2	2.1	Напряжённост ь и потенциал электростатич еского поля. Поляризация. Электрическа я ёмкость.	Напряжённость и потенциал электростатического поля. Теорема Гаусса. Теорема о циркуляции вектора напряжённости. Поляризация диэлектриков. Электрическая ёмкость. Конденсаторы. Энергия	1

			электростатического поля	
	2.1	Постоянный ток.	Основные понятия. Законы Ома и Кирхгофа. Мощность. Закон Джоуля Ленца.	1
	2.1	Магнитостати ка	Закон Био-Савара-Лапласа. Индукция и напряжённость магнитного поля. Закон Ампера. Сила Лоренца. Энергия поля.	1
	2.1	Электромагне тизм	Опыты Фарадея. Самоиндукция и взаимоиндукция. Уравнения Максвелла.	1
3	3.1	Колебания и волны	Гармонические колебания. Сложение колебаний. Упругие и электромагнитные волны. Интерференция.	1
	3.1	Оптика	Законы геометрической оптики. Дифракция. Поляризация.	1
	3.2	Тепловое излучение. Внешний фотоэффект. Основы квантовой механики. Атом водорода. Основы ядерной физики. Элементарные частицы.	Законы Кирхгофа, СтефанаБольцмана, Вина, Планка. Закон Эйнштейна для внешнего фотоэффекта. Гипотеза Де-Бройля, принцип неопределённости, уравнение Шредингера и его решения. Постулаты Бора. Сериальные формулы. Радиоактивное излучение. Ядерные реакции. Элементарные частицы	1
8		ı		

3.2.3. Лабораторные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Кинематика. Динамика пос тупательного и вращательног о движения.	Скорость, ускорение при поступательном и вращательном движении. Динамика поступательного и вращательного движения. Законы сохранения. Силы трения и инерции. Энергия. Теория	1

	<u> </u>	Энергия.	гравитации.	
	1.2	Эксперимента льные газовые законы. Теплоёмкость. Первый закон термодинамик и.	Экспериментальные газовые законы. Теплоёмкость. Первый закон термодинамики.	1
	1.2	Молекулярно- кинетическая теория	Основное уравнение М.К.Т. Степени свободы молекулы. Энтропия. Второй закон термодинамики. Циклы	1
2	2.1	Напряжённост ь и потенциал электростатич еского поля. Поляризация. Электрическа я ёмкость.	Напряжённость и потенциал электростатического поля. Теорема Гаусса. Теорема о циркуляции вектора напряжённости. Поляризация диэлектриков. Электрическая ёмкость. Конденсаторы. Энергия электростатического поля.	1
	2.1	Магнитостати ка	Закон Био-Савара-Лапласа. Индукция и напряжённость магнитного поля. Закон Ампера. Сила Лоренца. Энергия поля	1
	2.1	Электромагне тизм	Опыты Фарадея. Самоиндукция и взаимоиндукция. Уравнения Максвелла.	2
3	3.1	Колебания и волны	Гармонические колебания. Сложение колебаний. Упругие и электромагнитные волны. Интерференция.	1
	3.1	Оптика	Законы геометрической оптики. Дифракция. Поляризация.	1
	3.2	Тепловое излучение. Внешний фотоэффект. Основы квантовой механики. Атом водорода. Основы ядерной физики.	Законы Кирхгофа, СтефанаБольцмана, Вина, Планка. Закон Эйнштейна для внешнего фотоэффекта. Гипотеза Де-Бройля, принцип неопределённости, уравнение Шредингера и его решения. Постулаты Бора. Сериальные формулы. Радиоактивное излучение. Ядерные реакции. Элементарные частицы.	1

	Элементарные частицы.	
8		

3.3. Содержание материалов, выносимых на самостоятельное изучение

Модуль	Номер раздела	Содержание материалов, выносимого на самостоятельное изучение	Виды самостоятельной деятельности	Трудоемкость (в часах)
1	1.1	Кинематика	Скорость, ускорение при поступательном и вращательном движении	12
	1.1	Динамика поступательного и вращательного движения. Энергия	Динамика поступательного и вращательного движения. Законы сохранения. Силы трения и инерции. Энергия. Теория гравитации.	12
	1.1	Специальная теория относительности	Постулаты Эйнштейна. Преобразования Лоренца и следствия из них.	12
	1.2	Экспериментальные газовые законы. Теплоёмкость. Первый закон термодинамики. М олекулярно-кинетическая теория	Экспериментальные газовые законы. Теплоёмкость. Первый закон термодинамики. Основное уравнение М.К.Т. Степени свободы молекулы. Энтропия. Второй закон термодинамики. Циклы.	36
2	2.1	Напряжённость и потенциал электростатического поля. Поляризация. Электрическая ёмкость.	Напряжённость и потенциал электростатического поля. Теорема Гаусса. Теорема о циркуляции вектора напряжённости. Поляризация диэлектриков. Электрическая ёмкость. Конденсаторы. Энергия электростатического поля.	12
	2.1	Постоянный ток.	Основные понятия.	12

			Законы Ома и Кирхгофа. Мощность. Закон Джоуля- Ленца.	
	2.1	Магнитостатика	Закон Био-Савара- Лапласа. Индукция и напряжённость магнитного поля. Закон Ампера. Сила Лоренца. Энергия поля.	12
	2.1	Электромагнетизм	Опыты Фарадея. Самоиндукция и взаимоиндукция. Уравнения Максвелла.	12
3	3.1	Колебания и волны	Гармонические колебания. Сложение колебаний. Упругие и электромагнитные волны. Интерференция.	18
	3.1	Оптика	Законы геометрической оптики. Дифракция. Поляризация	18
	3.2	Тепловое излучение. Внешний фотоэффект. Основы квантовой механики.	Законы Кирхгофа, Стефана-Больцмана, Вина, Планка. Закон Эйнштейна для внешнего фотоэффекта. Гипотеза Де-Бройля, принцип неопределённости, уравнение Шредингера и его решения.	18
	3.2	Атом водорода. Основы ядерной физики. Элементарные частицы.	Постулаты Бора. Сериальные формулы. Радиоактивное излучение. Ядерные реакции. Элементарные частицы.	18
8				

4. Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств текущего контроля и промежуточной аттестации по итогам освоения дисциплины представлен в приложении.

Фонд оценочных средств

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

5.1.1. Печатные издания

1. 1. Савельев, Игорь Владимирович. Курс физики: В 3 т. Т.1: Механика. Молекулярная физика / Савельев Игорь Владимирович. - Москва : Наука, 1989. - 352 с. : ил. ISBN – 5-02-014430-4(Т.1) . Количество экземпляров: 158. 2. Савельев, Игорь Владимирович. Курс общей физики. Т. 2 : Электричество и магнетизм. Волны. Оптика / Савельев Игорь Владимирович. - 3-е изд., испр. - Москва : Наука. Гл. ред. физ.-мат. лит., 1988. – 496 с. : ил. – 1-20. Количество экземпляров: 18. 3. Савельев, И.В. Курс общей физики : Т. 3 : Оптика. Атомная физика. Физика атомного ядра и элементарных частиц / И. В. Савельев. - 4-е изд., стер. - Москва : Наука. Гл. ред. физ.-мат. лит., 1987. – 528 с. : ил. – 0-85. Количество экземпляров: 46.

5.1.2. Издания из ЭБС

1. 1. Родионов, Василий Николаевич. Физика: Учебное пособие / Родионов Василий Николаевич; Родионов В.Н. - 2-е изд. - М.: Издательство Юрайт, 2017. - 295. (Университеты России). - ISBN 978-5-534-01280-4. Количество экземпляров: 0 + е. 2. Ильин, Вадим Алексеевич. Физика: Учебник и практикум / Ильин Вадим Алексеевич; Ильин В.А., Бахтина Е.Ю., Виноградова Н.Б., Самойленко П.И. - М.: Издательство Юрайт, 2017. - 399. - (Бакалавр. Прикладной курс). - ISBN 978-5-53401411-2. Количество экземпляров: 0 + е. 2.

5.2. Дополнительная литература

5.2.1. Печатные издания

1. 1. Верхотуров, Анатолий Русланович. Физика: учеб. пособие / Верхотуров Анатолий Русланович, Шамонин Виктор Александрович. - Чита: ЧитГУ, 2011. - 176 с. - ISBN 9785-9293-0600-6. Количество экземпляров: 169. 2. Верхотуров, Анатолий Русланович. Физика: учеб. пособие / Верхотуров Анатолий Русланович, Шамонин Виктор Александрович, Белкин Сергей Юрьевич. - Чита: ЧитГУ, 2010. - 243 с. - ISBN 978-5-9293-0646-4. Количество экземпляров: 164. 3. Трофимова, Т. И. Курс физики: учеб. пособие / Т. И. Трофимова. - 2-е изд., испр. и доп. - Москва: Высш. шк., 1990. - 478 с. - ISBN 5-06-001540-8. Количество экземпляров: 80. 4. Савченко, Н.Д. Основы физики: учеб. пособие. Ч. 1: Механика. Электродинамика. Термодинамика / Н. Д. Савченко, Т. В. Кузьмина, Т. В. Рахлецова. - Чита: ЗабГУ, 2015. - 233 с. - ISBN 978-5-9293-1231-1. Количество экземпляров: 50 + е. 5. Основы физики: учеб. пособие. Ч. II: Физика колебаний и волн. Основы квантовой механики. Физика атомного ядра и элементарных частиц / Н.Д. Савченко [и др.]. - Чита: ЗабГУ, 2015. - 267 с. - ISBN 978-5-9293-1460-5. - ISBN 978-5-9293-1162-8. Количество экземпляров: 10 + е.

5.2.2. Издания из ЭБС

1. 1. Трофимова Т.И. Руководство к решению задач по физике. 3-е изд., испр. и доп.

 Учебное пособие для прикладного бакалавриата. Трофимова Т.И., -М.: Издательство Юрайт,
 2017.-265с. https://www.biblio-online.ru/viewer/1B164B8C-5D56-49A5-AE9BE2C23FF6479A.

5.3. Базы данных, информационно-справочные и поисковые системы

Название	Ссылка
Информационная система «Единое окно доступа к образовательным ресурсам»	http://window.edu.ru/
Научная Электронная Библиотека	http://www.e-library.ru
Электронные версии учебников, пособий, методических разработок, указаний и рекомендаций по всем видам учебной работы, предусмотренных вузовской рабочей программой, находящиеся в свободном доступе для студентов, обучающихся в вузе, на внутри сетевом сервере	http://www.zabgu.ru/
Интернет-тестирование	http://test.i-exam.ru

6. Перечень программного обеспечения

Программное обеспечение общего назначения: ОС Microsoft Windows, Microsoft Office, ABBYY FineReader, ESET NOD32 Smart Security Business Edition, Foxit Reader, АИБС "МегаПро".

Программное обеспечение специального назначения:

- 1) Google Chrome
- 2) Mozilla Firefox

7. Материально-техническое обеспечение дисциплины

Наименование помещений для проведения учебных занятий и для самостоятельной работы обучающихся	Оснащенность специальных помещений и помещений для самостоятельной работы
Учебные аудитории для проведения занятий лекционного типа	Состав оборудования и технических средств обучения указан в паспорте аудитории,
Учебные аудитории для проведения практических занятий	закрепленной расписанием по факультету
Учебные аудитории для проведения лабораторных занятий	

Учебные аудитории для промежуточной аттестации	
Учебные аудитории для проведения групповых и индивидуальных консультаций	Состав оборудования и технических средств обучения указан в паспорте аудитории, закрепленной расписанием по кафедре

8. Методические рекомендации по организации изучения дисциплины

Лекции являются основным источником теоретического материала по дисциплине «Физика». Посещение и конспектирование лекций является обязательной составляющей успешного освоения дисциплины обучающимися.

Для эффективного освоения материала дисциплины «Физика» необходимо выполнение следующих требований:

- обязательное посещение всех лекционных и практических занятий, способствующее системному овладению материалом курса;
- все вопросы соответствующих разделов и тем по дисциплине необходимо фиксировать (на любых носителях информации);
- обязательное выполнение домашних заданий является важнейшим требованием и условием формирования целостного и системного знания по дисциплине;
- обязательность личной активности каждого студента на всех занятиях по дисциплине;
- в случаях неясности каких-либо вопросов, обсуждаемых на занятиях, необходимо задать соответствующие вопросы преподавателю, а не оставлять их непонятыми; в случаях пропусков занятий по уважительным причинам студентам предоставляется право подготовки и представления заданий и ответов на вопросы изученного материала, с расчетом на помощь преподавателя в его усвоении;
- в случаях пропусков без уважительной причины студент обязан самостоятельно изучить соответствующий материал;
- необходимым условием является самостоятельность и инициативность студентов при контроле набора баллов по дисциплине для успешного прохождения промежуточной аттестации.

Порядок организации самостоятельной работы студентов Самостоятельная работа студентов предполагает:

- самостоятельный поиск, обработку (анализ, синтез, обобщение и систематизацию), адаптацию необходимой по дисциплине информации;
- выполнение заданий для самостоятельной работы;
- изучение и усвоение теоретического материала, представленного на лекционных занятиях и в соответствующих литературных источниках (рекомендуемая основная и дополнительная литература);
- самостоятельное изучение отдельных вопросов курса;
- подготовка к практическим и лабораторным занятиям, в соответствии с рекомендациями преподавателя (выполнение конкретных заданий, соответствующие организационные действия и т.д.).

Порядок организации лабораторной работы студентов

Лабораторная работа студентов предполагает сознательной активной работы не только в лаборатории при сборке установки и проведении измерений, но и дома при под-готовке к измерениям, обработке результатов и составления отчета.

Выполнение лабораторной работы есть определенная последовательность действий: — подготовка к эксперименту;

- проведение измерений;
- обработка полученных результатов;
- формулировка выводов и написание отчета.

Для грамотного и быстрого их выполнения должна сложиться определенная система знаний и умений (ориентировочная основа действия), которая обеспечит правильное и рациональное исполнение действия.

Поэтому выполнение каждой лабораторной работы по физике необходимо начинать с изучения ее описания и приведения знаний в систему, а именно: — ясно представить себе общую цель данной конкретной лабораторной работы и последовательность задач, решение которых приведет к достижению окончательной цели;

- знать, какое физическое явление изучается в данной работе, какими зависимостям связаны описывающие его величины;
- знать основные особенности объекта исследования
- изучить и уметь объяснить физические основы используемых в работе методов измерения искомых величин;
- уметь нарисовать принципиальную схему используемой установки и знать назначение каждого из ее узлов;
- знать последовательность выполнения этапов лабораторной работы;
- иметь общее представление об ожидаемых результатах проводимого эксперимента и уметь выбрать метод, нужный для их математической обработки

Порядок организации студентов на практическом занятии

На практических занятиях обобщаются и систематизируются знания полученные на лекционных занятиях и формируются умения решать типовые задачи. При решении за-дач по физике студент должен уметь:

- выделять описываемое явление (объект), анализировать условие задачи;
- выполнять построение модели явления;
- формулировать выводы из модели;
- выявлять применения полученных знаний в профессиональной деятельности.

Разработчик/группа разработчиков:	
Анатолий Прокопьевич Дружинин	
Типовая программа утверждена	
Согласована с выпускающей кафедрой	
Заведующий кафедрой	
«»20	Γ.