МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Забайкальский государственный университет» (ФГБОУ ВО «ЗабГУ»)

Энергетический факультет	
Кафедра Энергетики	УТВЕРЖДАЮ:
	Декан факультета
	Энергетический факультет
	Батухтин Андрей Геннадьевич
	«»20 г.
РАБОЧАЯ ПРОГРАММА ДИСЦИІ	ІЛИНЫ (МОДУЛЯ)
Б1.О.21 Гидрогазодина на 180 часа(ов), 5 зачетных (ыс для направления подготовки (специальности) 13.03.0	е) единиц(ы)
составлена в соответствии с ФГОС ВО, ут Министерства образования и науки Рос «» 20 г	сийской Федерации от
Профиль – Тепловые электрические станции (для набо Форма обучения: Заочная	opa 2021)

1. Организационно-методический раздел

1.1 Цели и задачи дисциплины (модуля)

Цель изучения дисциплины:

основные физические свойства жидкостей и газов, общие законы и уравнения статики, кинематики и динамики жидкостей и газов, особенности физического и математического моделирования одномерных и трехмерных, дозвуковых и сверхзвуковых, ламинарных и турбулентных течений идеальной и реальной несжимаемой и сжимаемой жидкостей.

Задачи изучения дисциплины:

в процессе изучения студенты, должны овладеть знаниями о гидродинамических процессах, фундаментальных понятий, законов и теорий классической и современной гидродинамики, выработать способность выделять конкретное физическое содержание в различных задачах профессиональной деятельности и уметь применять в них соответствующие законы, а также методы экспериментальных и теоретических исследований в теплофизике.

1.2. Место дисциплины (модуля) в структуре ОП

Дисциплина «Гидрогазодинамика» входит в Блок 1, базовая часть, «Дисциплины (модули)» программы бакалавриата в соответствии с ФГОС 3+ и относится к базовым дисциплинам, обязательным для изучения студентами, обучающихся по направлению 13.03.01 Теплоэнергетика и теплотехника. «Гидрогазодинамика» является специальной дисциплиной, относится к базовой части профессионального цикла дисциплин. Изучение специальных дисциплин ("Насосы, компрессоры, вентиляторы", "Котельные установки", "Турбины ТЭС и АЭС", "Основы централизованного теплоснабжения") основывается на знании основ гидрогазодинамики. Для успешного освоения дисциплины студент, обучающийся по профилю 13.03.01 Теплоэнергетика и теплотехника, должен иметь базовую подготовку по курсу физики и по разделам высшей математики: векторная алгебра,

1.3. Объем дисциплины (модуля) с указанием трудоемкости всех видов учебной работы

Общая трудоемкость дисциплины (модуля) составляет 5 зачетных(ые) единиц(ы), 180 часов.

Виды занятий	Семестр 3	Семестр 4	Всего часов
Общая трудоемкость			180
Аудиторные занятия, в т.ч.	10	8	18
Лекционные (ЛК)	4	4	8
Практические (семинарские) (ПЗ,	4	4	8

C3)			
Лабораторные (ЛР)	2	0	2
Самостоятельная работа студентов (СРС)	62	64	126
Форма промежуточной аттестации в семестре	Зачет	Экзамен	36
Курсовая работа (курсовой проект) (КР, КП)			

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые рез	вультаты освоения образовательной программы	Планируемые результаты обучения по дисциплине
Код и наименование компетенции	Индикаторы достижения компетенции, формируемые в рамках дисциплины	Дескрипторы: знания, умения, навыки и (или) опыт деятельности
ОПК-3	ИД-1ОПК-3 Демонстрирует понимание основных законов движения жидкости и газа	Знать: основные законы движения жидкости и газа. Уметь: применять основные законы движения жидкости и газа. Владеть: навыками решения типовых заданий с выполнением необходимых вычислений,
ОПК-3	ИД-2ОПК-3 Применяет знания основ гидрогазодинамики для расчетов теплотехнических установок и систем	Знать: основы гидрогазодинамики Уметь: применять основы гидрогазодинамики для расчетов теплотехнических установок и систем Владеть: умениями составления, решения, анализа уравнений на основе законов гидродинамики в задачах профессиональной направленности

ОПК-3	ИД-3ОПК-3 Использует знание теплофизических свойств рабочих тел при расчетах	Знать: теплофизические свойо рабочих тел
	теплотехнических установок и систем	Уметь: использовать зна теплофизических свойств рабо тел при расче теплотехнических установок систем
		Владеть: умениями составлен решения, анализа уравнений основе теплофизических свой рабочих при расчетеплотехнических установок систем
ОПК-3	ИД-4ОПК-3 Демонстрирует понимание основных законов термодинамики и термодинамических соотношений	Знать: основные зако термодинамики и термодинамические соотношен
		Уметь: использовать знания понимание основных зако термодинамики и термодинамических соотношен
		Владеть: умениями и навык составления, решения, анал уравнений на осн термодинамики и термодинамических соотношения.
ОПК-3	ИД-5ОПК-3 Применяет знания основ термодинамики для расчетов термодинамических процессов,	Знать: основы термодинами термодинамические процесциклы и их показатели.
	циклов и их показателей	Уметь: использовать знания ос термодинамики для расчетов термодинамических процес циклов и их показателей
		Владеть: умениями и навык составления, решения, анал уравнений на осн термодинамики для расчетов
ОПК-3	ИД-6ОПК-3 Демонстрирует	Знать: основные законы и спос

	понимание основных законов и способов переноса теплоты и массы	переноса теплоты и массы Уметь: использовать знания основных законов и способов переноса теплоты и массы Владеть: умениями и навыками составления, решения, анализа уравнений на основе основных законов и способов переноса теплоты и массы.
ОПК-3	ИД-7ОПК-3 Применяет знания основ тепломассообмена в теплотехнических установках	Знать: основы тепломассообмена в теплотехнических установках Уметь: использовать знания основ тепломассообмена в теплотехнических установках Владеть: умениями и навыками составления, решения, анализа уравнений на основе знания законов тепломассообмена в теплотехнических установках

3. Содержание дисциплины

3.1. Разделы дисциплины и виды занятий

3.1 Структура дисциплины для заочной формы обучения

Модуль	Номер раздела	Наименование раздела	Темы раздела	Всего часов	•	(итор аняті		C P
					Л К	П 3 (С 3)	Л Р	С
1	1.1	Введение. Задачи курса. История развития	Введение. Задачи курса. История развития	18	0	2	0	16
	1.2	Силы, действующие в жидкостях и газах	Силы, действующие в жидкостях и газах	18	2	0	0	16
	1.3	Гидростатика.	Гидростатика. Закон	18	0	2	0	16

		Закон Паскаля Жидкость в поле сил тяжести	Паскаля Жидкость в поле сил тяжести					
	1.4	Кинематика жидкости Уравнение Бернулли	Кинематика жидкости Уравнение Бернулли	20	2	0	2	16
2	2.1	Одномерные течения идеального газа	Одномерные течения идеального газа	36	2	2	0	32
	2.2	Двухкомпонен тные и двухфазные течения	Двухкомпонентные и двухфазные течения	36	2	2	0	32
		Итого		146	8	8	2	128

3.2. Содержание разделов дисциплины

3.2.1. Лекционные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.2	Силы, действующие в жидкостях и газах	Силы, действующие в жидкостях и газах	2
	1.4	Кинематика жидкости Уравнение Бернулли	Кинематика жидкости Уравнение Бернулли	2
2	2.1	Одномерные течения идеального газа	Одномерные течения идеального газа	2
	2.2	Двухкомпонен тные и двухфазные течения	Двухкомпонентные и двухфазные течения	2

3.2.2. Практические занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Введение. Задачи курса. История развития	Введение. Задачи курса. История развития	2
	1.3	Гидростатика. Закон Паскаля Жидкость в поле сил тяжести	Гидростатика. Закон Паскаля Жидкость в поле сил тяжести	2
2	2.1	Одномерные течения идеального газа	Одномерные течения идеального газа	2
	2.2	Двухкомпонен тные и двухфазные течения	Двухкомпонентные и двухфазные течения	2

3.2.3. Лабораторные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.4	Кинематика жидкости Уравнение Бернулли	Кинематика жидкости Уравнение Бернулли	2
2				

3.3. Содержание материалов, выносимых на самостоятельное изучение

Модуль	Номер раздела	Содержание материалов, выносимого на самостоятельное изучение	Виды самостоятельной деятельности	Трудоемкость (в часах)
1	1.1	Введение. Задачи курса. История развития	Введение. Задачи курса. История развития	16
	1.2	Силы, действующие в жидкостях и газах	Силы, действующие в жидкостях и газах	16

	1.3	Гидростатика. Закон Паскаля Жидкость в поле сил тяжести	Гидростатика. Закон Паскаля Жидкость в поле сил тяжести	16
	1.4	Кинематика жидкости Уравнение Бернулли	Кинематика жидкости Уравнение Бернулли	16
2	2.1	Одномерные течения идеального газа	Одномерные течения идеального газа	32
	2.2	Двухкомпонентные и двухфазные течения	Двухкомпонентные и двухфазные течения	32

4. Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств текущего контроля и промежуточной аттестации по итогам освоения дисциплины представлен в приложении.

Фонд оценочных средств

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

5.1.1. Печатные издания

1. 1. Горячих, Н.В. Гидрогазодинамика: учеб. пособие / Н. В. Горячих, С. Ф. Мирошников. - Чита: ЗабГУ, 2014. - 189 с.: ил. - ISBN 978-5-9293-0971-7: 135-00. 2. Кудинов, Анатолий Александрович. Гидрогазодинамика: учеб. пособие / Кудинов Анатолий Александрович. - Москва: ИНФРА-М, 2012. - 336 с. - (Высшее образование).- ISBN 978-5-16-004730-0: 279-95. 3. Емцев, Б.Т. Техническая гидромеханика: учеб. для вузов / Б. Т. Емцев. - Москва:

5.1.2. Издания из ЭБС

1.

5.2. Дополнительная литература

5.2.1. Печатные издания

1. 1. Гидромеханика: метод. указания / разраб. К.К. Размахнин. - Чита: ЧитГУ, 2008. - 25с. - 23-00. 2. Кириллин, Владимир Алексеевич. Техническая термодинамика: учебник / Кириллин Владимир Алексеевич, Сычев Вячеслав Владимирович, Шейндлин Александр Ефимович. - 5-е изд., перераб. и доп. - Москва: МЭИ, 2008. - 496 с.: ил. - ISBN 978-5-383-00263-6: 1013-00. 3. Соколов, Е.Я. Теплофикация и тепловые сети: учебник / Е. Я. Соколов. - 5-е изд., перераб. и доп. - Москва: Энергоиздат, 1982. - 360с.: ил. - 1-10. 4. Турбины тепловых и атомных электрических станций: учебник / Костюк Аскольд Глебович [и др.]; под ред. А.Г. Костюка, В.В. Фролова. - 2-е изд., перераб.и доп. - Москва: МЭИ, 2001.

5.2.2. Издания из ЭБС

1. 1. Пастоев, И.Л. Гидромеханика: Методические указания для студентов заочного обучения / И. Л. Пастоев, Н. И. Берлизев, М. Г. Рахутнв; Пастоев И.Л.; Берлизев Н.И.; Рахутнв М.Г. - Моѕсоw : Горная книга, 2006. - . - Гидромеханика: Методические указания для студентов заочного обучения [Электронный ресурс] / Пастоев И.Л., Берлизев Н.И., Рахутин М.Г. - 4-е изд., стер. - М: Издательство Московского государственного горного университета, 2006. - ISBN 5-7418-0161-7. http://www.studentlibrary.ru/book/ISBN5741801617.htm112

5.3. Базы данных, информационно-справочные и поисковые системы

	Соуунуо
название	Ссылка

6. Перечень программного обеспечения

Программное обеспечение общего назначения: ОС Microsoft Windows, Microsoft Office, ABBYY FineReader, ESET NOD32 Smart Security Business Edition, Foxit Reader, АИБС "МегаПро".

Программное обеспечение специального назначения:

7. Материально-техническое обеспечение дисциплины

Наименование помещений для проведения учебных занятий и для самостоятельной работы обучающихся	Оснащенность специальных помещений и помещений для самостоятельной работы
Учебные аудитории для проведения занятий лекционного типа	Состав оборудования и технических средств обучения указан в паспорте аудитории, закрепленной расписанием по факультету
Учебные аудитории для проведения практических занятий	
Учебные аудитории для проведения лабораторных занятий	
Учебные аудитории для промежуточной аттестации	
Учебные аудитории для проведения групповых и индивидуальных консультаций	Состав оборудования и технических средств обучения указан в паспорте аудитории, закрепленной расписанием по кафедре
Учебные аудитории для текущей аттестации	

8. Методические рекомендации по организации изучения дисциплины

Для эффективного освоения материала дисциплины необходимым является выполнение следующих требований:

- обязательное посещение всех лекционных занятий, способствующее системному овладению материалом курса;
- все вопросы соответствующих разделов и тем по дисциплине необходимо фиксировать (на любых носителях информации);
- обязательное самостоятельное выполнение домашних заданий является важнейшим требованием и условием формирования целостного и системного знания по дисциплине;
- обязательность личной активности каждого студента на всех занятиях по дисциплине;
- в случаях неясности каких-либо вопросов, обсуждаемых на занятиях, необходимо задать соответствующие вопросы преподавателю, а не оставлять их непонятыми;
- в случаях пропусков занятий по уважительным причинам студентам предоставляется право подготовки и представления заданий и ответов на вопросы изученного материала, с расчетом на помощь преподавателя в его усвоении;
- в случаях пропусков без уважительной причины студент обязан самостоятельно изучить соответствующий материал;
- необходимым условием является самостоятельность и инициативность студентов при контроле набора баллов по дисциплине для успешного прохождения промежуточной аттестации.

Для эффективного освоения материала дисциплины в ходе практических занятий необходимо выполнение следующих требований:

- четко понимать цели предстоящих занятий (предварительно формулируются преподавателем):
- владеть навыками поиска, обработки, адаптации и презентации необходимого материала;
- уметь четко формулировать и отстаивать собственный взгляд на рассматриваемые проблемные вопросы, который необходимо подкреплять адекватной аргументацией;
- уметь выделять и формулировать противоречия по рассматриваемым проблемам, понимая их источники;
- владеть навыками публичного выступления (логично, ясно и лаконично излагать свои мысли; адекватно оценивать восприятие и понимание слушателями представляемого материала; отвечать на задаваемые вопросы; приводить адекватные и убедительные аргументы в защиту своей позиции и т.д.);
- уметь критически оценивать собственные знания, умения и навыки в динамике в сравнении с таковыми у других, с целью раскрытия дополнительных возможностей их развития;
- при подготовке к занятиям обязательно изучить рекомендуемую литературу;
- оценить различные точки зрения на проблемные вопросы нескольких исследователей, а не ограничиваться рассмотрением позиции одного автора;
- при формулировке собственной точки зрения предусмотреть убедительную ее аргументацию и возможность возникновения спорных ситуаций;
- владеть навыками работы в команде (при выполнении определенных заданий, предполагающих работу в микрогруппах, при проведении ролевых игр, дискуссий и т.д.). Порядок организации самостоятельной работы студентов

Самостоятельная работа студентов предполагает:

- самостоятельный поиск, обработку (анализ, синтез, обобщение и систематизацию), адаптацию необходимой по дисциплине информации;
- выполнение заданий для самостоятельной работы;
- изучение и усвоение теоретического материала, представленного на лекционных занятиях и в соответствующих литературных источниках (рекомендуемая основная и дополнительная

литература);

- самостоятельное изучение отдельных вопросов курса;
- подготовка к практическим и семинарским занятиям, в соответствии с рекомендациями преподавателя (выполнение конкретных заданий, соответствующие организационные действия и т.д.).

Подготовка индивидуальных сообщений (докладов) в рамках самостоятельной работы студента предполагает достаточно длительную системную работу студента, а также в случае необходимости консультативную помощь преподавателя.

Работа должна быть тщательно продумана, спланирована и разделена на соответствующие этапы, каждый из которых требует целого ряда определенных умений и навыков:

- определение и формулировка темы сообщения или доклада (либо осмысление темы, сформулированной преподавателем в соответствующих случаях);
- составление плана с использованием анализа, синтеза, обобщения и логики построения изложения материала;
- определение источников информации;
- работа с источниками научной информации (подбор, анализ, обобщение, систематизация, адаптация и т.д.);
- формулировка основных обобщений и выводов по результатам анализа изученного материала.

Разработчик/группа разработчиков: