МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Забайкальский государственный университет» (ФГБОУ ВО «ЗабГУ»)

Горный факультет Кафедра Технических систем и робототехники	УТВЕРЖДАЮ:
	Декан факультета
	Горный факультет
	Авдеев Павел Борисович
	«»20
	Γ.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.18 Теоретические основы электротехники на 324 часа(ов), 9 зачетных(ые) единиц(ы) для направления подготовки (специальности) 13.03.02 - Электроэнергетика и электротехника

составлена в соот	ветствии с ФГОС В	3O, утвержденным приказом
Министерства о	бразования и науки	и Российской Федерации от
« _	» 20	г. №

Профиль – Электроснабжение (для набора 2021) Форма обучения: Заочная

1. Организационно-методический раздел

1.1 Цели и задачи дисциплины (модуля)

Цель изучения дисциплины:

"Теоретические основы электротехники" является получение студентами теоретических и практических знаний расчёта процессов электромагнитного преобразования энергии, чтения и преобразования электрических схем, расчётов электротехнических цепей и режимов работы в электрических цепях.

Задачи изучения дисциплины:

формирование у студентов минимально необходимых знаний: основных законов электротехники и методов анализа электрических, магнитных и электронных цепей; принципов действия, свойств, областей применения и потенциальных возможностей основных электротехнических, электронных устройств и электроизмерительных приборов; основ электробезопасности; умения экспериментальным способом и на основе паспортных и каталожных данных определять параметры и характеристики типовых электротехнических и электронных устройств; использовать современные вычислительные средства для анализа состояния и управления электротехническими элементами, устройствами и системами.

1.2. Место дисциплины (модуля) в структуре ОП

Дисциплина Б1.О.18 «Теоретические основы электротехники» относится к базовой части блока 1 «Дисциплины (модули)». Указанная дисциплина является одной из важнейших, имеет как самостоятельное значение, так и является базовой для всех профилей подготовки направления 13.03.02 «Электроэнергетика и электротехника». Входные знания, умения и компетенции студентов должны соответствовать знаниям и компетенциям, полученных при изучении дисциплин Б1.О.10 «Высшая математика», Б1.О.13 «Физика». Для успешного изучения дисциплины необходимо общее знакомство с цепями постоянного и переменного тока, с магнитными цепями, с законами Ома, Фарадея и Джоуля, с законом сохранения энергии и понятиями интеграла, производной и комплексного числа. Из курсов физики: «Электричество и магнетизм. Из высшей математики необходимо знание разделов: «Линейная алгебра», «Дифференциальное И интегральное исчисления», «Дифференциальные уравнения», «Теория функций комплексного переменного».

1.3. Объем дисциплины (модуля) с указанием трудоемкости всех видов учебной работы

Общая трудоемкость дисциплины (модуля) составляет 9 зачетных(ые) единиц(ы), 324 часов.

Виды занятий	Семестр 3	Семестр 4	Всего часов
Общая трудоемкость			324
Аудиторные занятия, в т.ч.	12	12	24

Лекционные (ЛК)	4	4	8
Практические (семинарские) (ПЗ, CЗ)	4	4	8
Лабораторные (ЛР)	4	4	8
Самостоятельная работа студентов (СРС)	96	168	264
Форма промежуточной аттестации в семестре	Зачет	Экзамен	36
Курсовая работа (курсовой проект) (КР, КП)	КР	КР	

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые рез	ультаты освоения образовательной программы	Планируемые результаты обучения по дисциплине			
Код и наименование компетенции	Индикаторы достижения компетенции, формируемые в рамках дисциплины	Дескрипторы: знания, умения, навыки и (или) опыт деятельности			
ОПК-4		Знать: методы анализа и моделирования электрических цепей и электрических машин. Уметь: использовать методы анализа и моделирования электрических цепей и электрических машин. Владеть: методами анализа и моделирования электрических цепей и электрических машин.			
ОПК-6		Знать: способы и методы измерения электрических и			

неэлектрических величин применительно к объектам профессиональной деятельности.
Уметь: проводить измерения электрических и неэлектрических величин применительно к объектам профессиональной деятельности.
Владеть: способами и методами измерения электрических и неэлектрических величин применительно к объектам профессиональной деятельности.

3. Содержание дисциплины

3.1. Разделы дисциплины и виды занятий

3.1 Структура дисциплины для заочной формы обучения

Модуль	Номер раздела	Наименование раздела	Темы раздела	Всего часов	*	цитор анят		C P
					Л К	П 3 (С 3)	Л Р	С
1	1.1	Электрически е цепи постоянного тока.	Физические основы электротехники. Элементы электрических цепей и электрических схем. Обобщенный закон Ома для участка цепи с ЭДС. Законы Кирхгофа. Преобразования линейных электрических схем. Основные методы расчёта разветвлённых цепей. Баланс мощности. Метод узловых потенциалов.	26	2	2	2	20

		Метод двух узлов. Метод контурных токов. Принцип наложения (суперпозиций). Теорема взаимности. Теорема компенсации. Двухполюсники. Метод эквивалентного генератора. Потенциальная диаграмма.					
1.2	Электрически е цепи переменного тока.	Цепи синусоидального тока. Изображение синусоидальных функций времени вращающимися векторами и комплексными числами. Расчёт цепей при синусоидальных токах.	26	2	2	2	20
1.3	Трёхфазные электрические цепи.	Трёхфазные цепи. Соединения в звезду и треугольник. Фазные и линейные величины. Расчёт симметричных режимов трёхфазных цепей. Расчёт несимметричных режимов трёхфазной цепи. Метод симметричных составляющих. Расчёт цепей с несимметричной нагрузкой.	20	0	0	0	20
1.4	Цепи периоди ческого несин усоидального тока.	Несинусоидальные периодические токи, ЭДС, напряжения, их разложение в тригонометрический ряд. Расчёт цепей с несинусоидальными периодическими ЭДС и токами. Резонансные явления при несинусоидальных ЭДС и токах.	20	0	0	0	20

1.5	Четырёхполюс ники.	Четырёхполюсники при синусоидальных токах и напряжениях. Типы четырёхполюсников. Зависимые источники. Режимы работы четырёхполюсников. Определение параметров четырёхполюсников.	10	0	0	0	10
1.6	Электрически е фильтры.	Электрические фильтры. типа k- и m	6	0	0	0	6
2.1	Переходные процессы в линейных электрических цепях.	Классический метод расчёта переходных процессов. Законы коммутации. Переходные процессы в цепях с L;С и R элементами. Апериодический и колебательный режим. Общий случай расчёта переходных процессов в разветвлённых цепях классическим методом. Характеристическое уравнение. Интеграл Дюамеля. Временная и импульсная переходные характеристики. Операторный метод расчёта переходных процессов. Преобразования Лапласа. Законы электрических цепей в операторной форме. Теорема разложения. Применение операторного метода к расчёту переходных процессов в цепи с синусоидальными ЭДС и токами.	46	2	2	2	40
2.2	Цепи с распре делёнными	Цепи с распределёнными	36	2	2	2	30

	параметрами.	параметрами. Уравнение однородной линии в общем виде. Уравнение однородной линии с гиперболическими функциями.					
2.3	Переходные процессы в линиях с расп ределёнными параметрами.	Переходные процессы в линиях с распределёнными параметрами. Возникновение волн с прямоугольным фронтом. Отражение волн с прямоугольным фронтом от конца линии.	40	0	0	0	40
2.4	Нелинейные электрические цепи.	Общие сведения о нелинейных цепях. Методы расчёта нелинейных цепей на постоянном токе.	30	0	0	0	30
2.5	Магнитные цепи.	Общие сведения о нелинейных цепях. Методы расчёта нелинейных цепей на постоянном токе. Расчёт сложной электрической цепи с нелинейными элементами на постоянном токе.	28	0	0	0	28
	Итого	_	288	8	8	8	264

3.2. Содержание разделов дисциплины

3.2.1. Лекционные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Элементы электрических цепей и электрических схем. Основные законы и	Обобщенный закон Ома для участка цепи с ЭДС. Законы Кирхгофа. Преобразования линейных электрических схем. Основные методы расчёта разветвлённых цепей. Баланс мощности. Метод узловых потенциалов. Метод двух узлов.	2

		методы расчёта электрических цепей.	Метод контурных токов. Принцип наложения (суперпозиций). Теорема взаимности. Теорема компенсации. Двухполюсники. Метод эквивалентного генератора. Потенциальная диаграмма.	
	1.2	Цепи синусои дального тока.	Изображение синусоидальных функций времени вращающимися векторами и комплексными числами. Индуктивность L и ёмкость С в цепях переменного синусоидального тока. Последовательное и параллельное соединение L и С. Треугольники сопротивлений и мощностей. Условия передачи максимальной мощности от источника электрической энергии к приёмнику. Расчёт цепей при синусоидальных токах. О применимости методов расчёта цепей постоянного тока. Сложные разветвлённые цепи. Топографические диаграммы. Резонансные явления в цепях переменного синусоидального тока. Частотные характеристики цепи. Цепи с взаимной индуктивностью. Согласное и встречное включение двух индуктивно связанных катушек. Эквивалентная замена индуктивных связей. Трансформатор без стального сердечника. Круговые диаграммы для разветвлённой цепи.	
2	2.1	Переходные процессы.	Классический метод расчёта переходных процессов. Законы коммутации. Переходные процессы в цепях с L;С и R элементами. Апериодический, критический и колебательный режим. Общий случай расчёта переходных процессов в разветвлённых цепях классическим методом. Характеристическое уравнение. Интеграл Дюамеля. Временная и импульсная переходные характеристики. Операторный метод расчёта переходных процессов. Преобразования Лапласа. Законы электрических цепей в операторной	2

		форме. Теорема разложения. Применение операторного метода к расчёту переходных процессов в цепи с синусоидальными ЭДС и токами.	
2.2	Цепи с распре делёнными параметрами.	Уравнение однородной линии в общем виде. Уравнение однородной линии с гиперболическими функциями. Режимы согласованной нагрузки в линии с потерями и в линии без потерь. Произвольная нагрузка линии без потерь.	2

3.2.2. Практические занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Преобразован ия линейных электрических схем. Основные методы расчёта разветвлённых цепей.	Решение задач по теме.	2
	1.2	Цепи синусои дального тока.	Решение задач по теме.	2
2	2.1	Классический и операторный методы расчёта переходных процессов.	Решение задач по теме.	2
	2.2	Цепи с распре делёнными параметрами.	Решение задач по теме.	2

3.2.3. Лабораторные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Цепи постоянного	Исследование метода эквивалентного генератора. Проверка законов	2

		тока.	Кирхгофа.	
	1.2	Цепи синусои дального тока.	Исследование резонанса напряжений. Исследование резонанса токов.	2
2	2.1	Переходные процессы.	Исследование переходных процессов в RC и RL цепях при включении на постоянное напряжение.	2
	2.2	Цепи с распре делёнными параметрами.	Исследование длинной линии. Стоячие волны в линии без потерь.	2

3.3. Содержание материалов, выносимых на самостоятельное изучение

Модуль	Номер раздела	Содержание материалов, выносимого на самостоятельное изучение	Виды самостоятельной деятельности	Трудоемкость (в часах)
1	1.1	Преобразования линейных электрических схем. Баланс мощности. Метод узловых потенциалов. Метод двух узлов. Метод контурных токов. Потенциальная диаграмма. Принцип наложения (суперпозиций). Теорема взаимности. Теорема компенсации.	Составление конспекта.	20
	1.2	Получение навыков работы с калькулятором комплексных чисел. Расчёт цепей при синусоидальных токах. Построение векторных диаграмм. Круговые диаграммы для разветвлённой цепи. Резонансные явления в цепях переменного синусоидального тока. Цепи с взаимной индуктивностью. Согласное и встречное включение двух индуктивно связанных	Составление конспекта.	20

	катушек.		
1.3	Трёхфазные цепи. Соединения в звезду. Трёхфазные цепи. Соединения в треугольник. Расчёт несимметричных режимов трёхфазной цепи при соединении нагрузки в звезду. Расчёт несимметричных режимов трёхфазной цепи при соединении нагрузки в треугольник. Аналитическое разложение на симметричные составляющие. Графическое разложение на симметричные составляющие.	Составление конспекта.	20
1.4	Несинусоидальные периодические токи, ЭДС, напряжения, их разложение в тригонометрический ряд. Расчёт цепей с несинусоидальными периодическими ЭДС и токами. Резонансные явления при несинусоидальных ЭДС и токах. Типовые несинусоидальные кривые токов и напряжений. Практическое определение коэффициентов ряда Фурье.	Составление конспекта.	20
1.5	Типы четырёхполюсников. Определение параметров четырёхполюсников. Согласованная нагрузка четырёхполюсника. Схемы включения	Составление конспекта.	10

		четырёхполюсников.		
	1.6	Типы электрических фильтров. Частотные характеристики электрических фильтров. Полоса пропускания фильтра.	Составление конспекта.	6
2	2.1	Классический метод расчёта переходных процессов. Законы коммутации. Переходные процессы в цепях с L;С и R элементами. Апериодический, критический и колебательный режим. Операторный метод расчёта переходных процессов. Преобразования Лапласа. Законы электрических цепей в операторной форме. Теорема разложения.	Составление конспекта.	40
	2.2	Цепи с распределёнными параметрами. Первичные параметры длинной линии. Уравнение однородной линии в общем виде. Уравнение однородной линии с гиперболическими функциями. Режимы согласованной нагрузки в линии с потерями и в линии без потерь.	Составление конспекта.	30
	2.3	Переходные процессы в линиях с распределёнными параметрами. Возникновение волн с прямоугольным фронтом. Отражение волн с прямоугольным фронтом от конца линии. Общий метод	Составление конспекта.	40

	определения отражённых волн в переходном режиме.		
2.4	Общие сведения о нелинейных цепях. Статическое, дифференциальное и динамическое сопротивления нелинейных элементов. Законы Кирхгофа и Ома для разветвлённых нелинейных цепей. Методы расчёта нелинейных цепей на постоянном токе графическим методом. Методы расчёта нелинейных цепей на постоянном токе аналитическими методами.	Составление конспекта.	30
2.5	Магнитные цепи. Закон полного тока. Законы Кирхгофа и Ома для разветвлённых магнитных цепей. Нелинейные электрические цепи переменного тока. Катушка со стальным сердечником. Явление феррорезонанса. Переходные процессы в нелинейных цепях.	Составление конспекта.	28

4. Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств текущего контроля и промежуточной аттестации по итогам освоения дисциплины представлен в приложении.

Фонд оценочных средств

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

5.1.1. Печатные издания

1. 1. Теоретические основы электротехники: учебник для вузов: В 3 т. Т.2 / Демирчян Камо Серопович [и др.]. - 4-е изд., доп. - Санкт-Петербург : Питер, 2006. - 576с. : ил. -(Учебник для вузов). - ISBN 5-94723-620-6. - ISBN 5-94723-513-7 : 300-00. 2. Бессонов, Лев Алексеевич. Теоретические основы электротехники. Электрические цепи в 2 ч. Часть 2. : Учебник / Бессонов Лев Алексеевич; Бессонов Л.А. - 12-е изд. - М.: Издательство Юрайт, 2017. - 346. - (Бакалавр. Академический курс). - ISBN 978-5-534-02623-8. - ISBN 978-5-534-02624-5 : 105.65. (электронная версия). 3. Бессонов, Лев Алексеевич. Теоретические основы электротехники. Электрические цепи в 2 ч. Часть 1. : Учебник / Бессонов Лев Алексеевич; Бессонов Л.А. - 12-е изд. - М.: Издательство Юрайт, 2016. - 364. -(Бакалавр. Академический курс). - ISBN 978-5-9916-9301-1. - ISBN 978-5-9916-9340-0 : 110.57. (электронная версия). 4. Теоретические основы электротехники: учебник: В 3 т. Т.3 / Демирчян Камо Серопович [и др.]. - 4-е изд., доп. - Санкт-Петербург: Питер, 2006. - 377с. : ил. - (Учебник для вузов). - ISBN 5-94723-620-6. - ISBN 5-94723-522-6 : 260-00. 5. Теоретические основы электротехники: учебник для вузов: В 3 т. Т.1 / Демирчян Камо Серопович [и др.]. - 4-е изд., доп. - Санкт-Петербург: Питер, 2006. - 463с.: ил. - (Учебник для вузов). - ISBN 5-94723-620-6. - ISBN 5-94723-479-3: 300-00.

5.1.2. Издания из ЭБС

1.

5.2. Дополнительная литература

5.2.1. Печатные издания

1. 1. Бессонов, Лев Алексеевич. Теоретические основы электротехники. Электрические цепи: учебник / Бессонов Лев Алексеевич. - 11-е изд., испр. и доп. - Москва: Гардарики, 2006. - 701с.: ил. - ISBN 5-8297-0159-6: 425-00. 2. Бессонов, Лев Алексеевич. Теоретические основы электротехники. Электромагнитное поле / Бессонов Лев Алексеевич. - 10-е изд. стер. - Москва: Гардарики, 2003. - 317 с.: ил. - ISBN 5-8297-0158-8: 145-00. 3. Бессонов, Лев Алексеевич. Теоретические основы электротехники. Сборник задач: Учебное пособие для бакалавров / Бессонов Лев Алексеевич; Бессонов Л.А. - Отв. ред. - 5-е изд. - М.: Издательство Юрайт, 2016. - 527. - (Бакалавр. Академический курс). - ISBN 978-5-9916-3486-1: 155.61. (электронная версия). 4. Атабеков, Г.И. Теоретические основы электротехники. Линейные электрические цепи: учеб. пособие / Г. И. Атабеков. - 7-е изд., стер. - Санкт-Петербург: Лань, 2009. - 592 с.: ил. - (Учебники для вузов. Специальная литература). - ISBN 978-5-8114-0800-9: 576-00. 5. Коровкин, Николай Владимирович. Теоретические основы электротехники: сб. задач / Коровкин Николай Владимирович, Селина Екатерина Евгеньевна, Чечурин Владимир Леонидович. - Санкт-Петербург: Питер, 2006. - 512с.: ил. - (Учебное пособие). - ISBN 5-94723-516-1: 330-00.

5.2.2. Издания из ЭБС

1.

5.3. Базы данных, информационно-справочные и поисковые системы

Название	Ссылка
Информационная система "Единое окно доступа к образовательным ресурсам" [Электронный ресурс]	http://window.edu.ru/

6. Перечень программного обеспечения

Программное обеспечение общего назначения: ОС Microsoft Windows, Microsoft Office, ABBYY FineReader, ESET NOD32 Smart Security Business Edition, Foxit Reader, АИБС "МегаПро".

Программное обеспечение специального назначения:

1) Mathematica Standart Version Education

7. Материально-техническое обеспечение дисциплины

Наименование помещений для проведения учебных занятий и для самостоятельной работы обучающихся	Оснащенность специальных помещений и помещений для самостоятельной работы
Учебные аудитории для проведения занятий лекционного типа	Состав оборудования и технических средств обучения указан в паспорте аудитории,
Учебные аудитории для проведения практических занятий	закрепленной расписанием по факультету
Учебные аудитории для проведения лабораторных занятий	
Учебные аудитории для текущей аттестации	Состав оборудования и технических средств обучения указан в паспорте аудитории, закрепленной расписанием по кафедре

8. Методические рекомендации по организации изучения дисциплины

Обучающимся необходимо ознакомиться: - с содержанием рабочей программы изучаемой дисциплины (далее - РПД), с целями и задачами дисциплины, ее связями с другими дисциплинами образовательной программы, с основной и дополнительной литературой, в частности с методическими разработками по данной дисциплине. Для успешного усвоения теоретического материала необходимо регулярно посещать лекции, активно работать на практических занятиях и лабораторных работах, перечитывать лекционный материал, значительное внимание уделять самостоятельному изучению дисциплины. Поэтому, важным условием успешного освоения дисциплины обучающимися является создание системы правильной организации труда, позволяющей распределить учебную нагрузку равномерно в соответствии с графиком образовательного процесса. Большую помощь в этом может

оказать составление плана работы на семестр, месяц, неделю, день. Его наличие позволит подчинить свободное время целям учебы, трудиться более успешно и эффективно. С вечера всегда надо распределять работу на завтрашний день. В конце каждого дня целесообразно подвести итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине они произошли. Нужно осуществлять самоконтроль, который является необходимым условием успешной учебы. Если что-то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана. Все задания к практическим занятиям, а также задания, вынесенные на самостоятельную работу, рекомендуется выполнять непосредственно после соответствующей темы лекционного курса. Это способствует лучшему усвоению материала, позволяет своевременно выявить и устранить «пробелы» в знаниях, систематизировать ранее пройденный материал, на его основе приступить к овладению новыми знаниями и навыками.

Юрий Владимирович Ермолаев		
Типовая программа утвержд	ена	
Согласована с выпускающей каф	едрой	
Заведующий кафедрой		
« »	_20	Γ.

Разработчик/группа разработчиков: