МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Забайкальский государственный университет» (ФГБОУ ВО «ЗабГУ»)

Ракультет естественных наук, математики и технологий	
Кафедра Физики	УТВЕРЖДАЮ:
	Декан факультета
	Факультет естественных наук, математики и технологий
	Токарева Юлия Сергеевна
	«»20 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.12 Физика на 252 часа(ов), 7 зачетных(ые) единиц(ы) для направления подготовки (специальности) 08.03.01 - Строительство

составлена в соответствии	с ФГОС ВО, утвержденным приказо	M
Министерства образован	ия и науки Российской Федерации от	Γ
«»	20 г. №	

Профиль – Промышленное и гражданское строительство (для набора 2021) Форма обучения: Заочная

1. Организационно-методический раздел

1.1 Цели и задачи дисциплины (модуля)

Цель изучения дисциплины:

является формирование у студентов, обучающихся по специальности 08.03.01 «Строительство" представлений и понятий о наиболее общих закономерностях различных форм движения неживой материи как научном фундаменте профессиональной подготовки, знакомство с методами теоретического и экспериментального изучения явлений, развитие научного мышления.

Задачи изучения дисциплины:

овладение системой знаний об основных физических явлениях и методах их исследования; развитие умений систематизации и анализа информации, развитие способности к самообучению, самоконтролю и самооценке.

1.2. Место дисциплины (модуля) в структуре ОП

Для успешного освоения дисциплины студент должен иметь базовую подготовку по математике, химии и физике в объеме программы средней школы, а также по разделам высшей математики: векторная алгебра, дифференциальное и интегральное исчисление, дифференциальные уравнения, теория вероятности. Дисциплина «физика» входит в в блок Б1.,базовой программы специалитета в соответствии с ФГОС 3++ и относится к базовым дисциплинам, обязательным для изучения студентам, общающихся по направлению 08.03.01 «Строительство"

1.3. Объем дисциплины (модуля) с указанием трудоемкости всех видов учебной работы

Общая трудоемкость дисциплины (модуля) составляет 7 зачетных(ые) единиц(ы), 252 часов.

Виды занятий	Семестр 2	Семестр 3	Всего часов
Общая трудоемкость			252
Аудиторные занятия, в т.ч.	22	12	34
Лекционные (ЛК)	(ЛК) 8 6		14
Практические (семинарские) (ПЗ, C3)	8	4	12
Лабораторные (ЛР)	6	2	8
Самостоятельная работа студентов	122	60	182

(CPC)			
Форма промежуточной аттестации в семестре	Зачет	Экзамен	36
Курсовая работа (курсовой проект) (КР, КП)			

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые рез	зультаты освоения образовательной программы	Планируемые результаты обучения по дисциплине	
Код и наименование компетенции	Индикаторы достижения компетенции, формируемые в рамках дисциплины	Дескрипторы: знания, умения, навыки и (или) опыт деятельности	
ОПК-1	ОПК-1.1. Выявление и классификация физических и химических процессов,	Знать: основные направления практического применения изучаемых теорий и законов	
	протекающих на объекте профессиональной деятельности	Уметь: анализировать изменение параметров, характеризующих рассматриваемое явление, при изменении условий	
		Владеть: навыками выявления классификации про-цессов протекающих на объектах профессиональной деятельност	
ОПК-1	ОПК-1.2. Определение характеристик физического процесса (явления), характерного для объектов профессиональной деятельности, н	Знать: основные разделы физики и сущности основных физических явлений, изучаемых в каждом разделе, Уметь: находить, систематизировать и анализировать новую информацию, относящуюся к научной, технической или технологической проблеме,	
		связанной с каким-либо физическим явлением, подготовить реферат или доклад	

		по выбранной теме;
		Владеть: вычислительными навыками, в том числе при громоздких (табличных) вычислениях и при построении графиков с использованием стандартных компьютерных програм
ОПК-1	ОПК-1.4. Представление базовых для профессиональной сферы физических процессов и явлений в виде математического(их) уравнения(й)	Знать: основные физические теории и границы их применимости, а также круга явлений и соответствующих им законов, которые могут быть объяснены на основе этих теорий и основные направления практически.
		Уметь: представлять базовые для профессиональной сферы физические процессы и явлений в виде математического(их)
		Владеть: навыками исследования функциональных зависимостей с использованием методов дифференциального и интегрального исчисления
ОПК-1	ОПК-1.5. Выбор базовых физических и химических законов для решения задач профессиональной деятельности	Знать: простейшие модели и основные понятий, используемых при изучении разных разделов физики; единиц
	профессиональной деятельности	Уметь: выбирать и применять базовые физические законы для профессиональной деятельности
		Владеть: навыками использование физических законов для решения профессиональных задач;
ОПК-1	ОПК-1.7. Решение уравнений, описывающих основные физические процессы, с применением методов линейной алгебры и математического анализа	Знать: составлять математическую модель задачной ситуации (т.е. выбирать нужные законы и согласовывать их с усло-виями задачи); выстраивать правильную логическую цепочку умозаключений при

		Уметь: обосновывать выбор метода решения задачи, строить математическую модель задачной ситуации, анализировать полученное решение и оценивать его правдоподобность. Владеть: навыками обработки экспериментальных результатов
ОПК-1	ОПК-1.8. Обработка расчетных и экспериментальных данных	Знать: методы обработки экспериментальных данных Уметь: методы математического анализа и моделирования, теоретического и экспериментального исследования при изучении разнообразн Владеть: вероятностно статистическими методами обработки экспериментальных результатов
ОПК-1	ОПК-1.11. Определение характеристик процессов распределения, преобразования и использования электрической энергии в электрических цепях	Знать: характеристики процессов распределения, преобразования и использования электрической энергии в электрических цепях Уметь: определять характеристики процессов распределения, преобразования и использования электрических Владеть: физическими законами, описывающие процессы распределения, преобразования и использования и использования и электрической энергии в электрических цепях

3. Содержание дисциплины

3.1. Разделы дисциплины и виды занятий

3.1 Структура дисциплины для заочной формы обучения

Модуль	Номер раздела	Наименование раздела	Темы раздела	Всего часов		итор анят		C P
					Л К	П 3 (С 3)	Л Р	C
1	1.1	Механика	Кинематика, Динамика. СТО	71	4	4	3	60
2	2.1	Электродинам ика	Электромагнитное поле в вакууме . Движение заряженных частиц в электрическом и магнитном полях. Взаимосвязь электрического и магнитного полей. Электрические и магнитные свойства вещества	73	4	4	3	62
3	3.1	Колебания и волны.	Колебательные процессы. Волновые процессы.	38	4	2	2	30
4	4.1	Квантовая оптика	Тепловое излучение, его характеристики и законы . Трудности волновой теории при объяснении закономерностей теплового излучения. Гипотеза Планка. Фотоэффект. Законы Столетова. Трудности волновой теории при объяснении закономерностей фотоэффекта. Гипотеза и уравнение Эйнштейна Корпускулярноволновой дуализм света. Дифракция электронов на кристаллах. Корпускулярноволновой дуализм микрочастиц вещества. Волновая функция, её	34	2	2	0	30

	физический смысл. Соотношения неопределенностей Гейзенберга. Границы применимости классической механики при описании движения микрочастиц.					
Итого		216	14	12	8	182

3.2. Содержание разделов дисциплины

3.2.1. Лекционные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Кинематика. Динамика. Законы сохранения	Кинематика материальной точки. Кинематика вращательного движения твердого тела. Динамика материальной точки и поступательного движения твердого тела. Работа, мощность, энергия. Законы сохранения в механике.	4
2	2.1	Электромагни тное поле в вакууме.	Основные характеристики и свойства электростатического поля Основные характеристики и свойства магнитного поля. Методы расчета характеристик эл. и маг. полей	4
3	3.1	Колебательны е процессы.	Уравнение и параметры гармонических колебаний. Энергия гармонических колебаний.	2
	3.1	Волновые процессы	Волновые процессы. Основные характеристики. Уравнение волны. Классификация и свойства упругих и электромагнитных волн. Принцип Гюйгенса. Распространение волн в однородной и	2
4	4.1	Элементы квантовой механики.	Корпускулярно-волновой дуализм света. Дифракция электронов на кристаллах. Корпускулярно-волновой дуализм микрочастиц вещества. Волновая функция, её физический смысл. Соотношения неопределенностей Гейзенберга.	2

	Границы применимости классической	
	механики при описании движения	
	микрочастиц.	

3.2.2. Практические занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Динамика	Элементы динамики твердого тела. Уравнение динамики вращательного движения твердого тела	4
2	2.1	Движение заряженных частиц в электрическо м и магнитном полях.	Движение заряженных частиц в продольном и поперечном электрическом и магнитном поле. Решение задач.	4
3	3.1	Волновая оптика	Интерференция, дифракция и поляризация света.	2
4	4.1	Фотоэффект	Уравнение Эйнштейна для фотоэффекта.	2

3.2.3. Лабораторные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Динамика	Изучение основного уравнения динамики вращательного движения. Определение момента инерции методом крутильных колебаний	3
2	2.1	Постоянный электрический ток	Измерение сопротивлений проводников с помощью моста Уитстона. Исследование зависимости силы тока, напряжения, мощности и коэффициента полезного действия цепи постоянного тока от	3
3	3.1	Волновые процессы	Определение скорости звука в воздухе методом стоячей волны. Определение длины световой волны с помощью дифракционной решетки	2
4		•		

3.3. Содержание материалов, выносимых на самостоятельное изучение

Модуль	Номер раздела	Содержание материалов, выносимого на самостоятельное изучение	Виды самостоятельной деятельности	Трудоемкость (в часах)
1	1.1	Элементы механики жидкости и газа. Элементы специальной теории относительности	Выполнение лабораторных работ. Решение задач. Подготовка к зачету	60
2	2.1	Взаимосвязь электрического и магнитного полей. Электрические и магнитные свойства вещества. Проводимость разных сред. Расчет цепей постоянного тока.	Решение задач. Лабораторная работа. Подготовка к зачету.	62
3	3.1	Методы сложения колебаний. Затухающие колебания. Переменный ток как вынужденные колебания. Фазовые соотношения в цепи переменного тока. Автоколебания. Мощность в цепи переменного	Обработка результатов эксперимента. Подготовка отчета по лабораторной работе. Сдача отчета и защита	30
4	4.1	Применение фотоэффекта. Давление света. Эффект Комптона.	Решение задач. Подготовка теории и отчета к лабораторной работе.	20

4. Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств текущего контроля и промежуточной аттестации по итогам освоения дисциплины представлен в приложении.

Фонд оценочных средств

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

5.1.1. Печатные издания

1. 1 Савельев И.В. Курс физики: В 3 т. Т.1: Механика. Молекулярная физика / И.В. Савельев. – Москва: Наука, 1989. – 352 с.: ил. ISBN – 5-02-014430-4(Т.1). 2. 2. Савельев И.В.Курс общей физики. Т. 2: Электричество и магнетизм. Волны. Оптика / И.В. Савельев. – 3-е изд., испр. – Москва: Наука. Гл. ред. физ.-мат. лит., 1988. – 496 с. 3. Савельев И.В. Курс общей физики: Т. 3: Оптика. Атомная физика. Физика атомного ядра и элементарных частиц / И.В. Савельев. – 4-е изд., стер. – Москва: Наука. Гл. ред. физ.-мат. лит., 1987. – 528с.

5.1.2. Издания из ЭБС

1. 1. Родионов В.Н. Физика [Электронный ресурс]: учеб. пособие / В.Н. Родионов. — 2-е изд. — Москва: Издательство Юрайт, 2017. — 295. — (Университеты России). — ISBN 978-5-534- 01280-4. — Режим доступа: www.biblioonline.ru/book/97EE90F4-3156-4408-A82B7A172E675A91. 2. Ильин В.А. Физика [Электронный ресурс]: учебник и практикум / В.А. Ильин, Е.Ю. Бахтина, Н.Б. Виноградова, П.И. Самойленко; под ред. В.А. Ильина. — Москва: Издательство Юрайт, 2017. — 399. — (Бакалавр. Прикладной курс). — ISBN 978-5-534- 01411-2. — Режим доступа: www.biblioonline.ru/book/E6C7AF81-5AD4-447D-9A63- A1D57730700B.

5.2. Дополнительная литература

5.2.1. Печатные издания

1. 1.1. Верхотуров А.Р. Физика: учеб. пособие / А.Р. Верхотуров, В.А. Шамонин. – Чита: ЧитГУ, 2011. – 176 с. – ISBN 978-5-9293-0600-6. 2. Верхотуров А.Р. Физика: учеб. пособие /А.Р. Верхотуров, В.В. Шамонин, С.Ю. Белкин. – Чита: ЧитГУ, 2010. – 243 с. – ISBN 978-5-9293-0646-4. 22 3. Трофимова, Т. И. Курс физики: учеб. пособие / Т. И. Трофимова. - 2-е изд., испр. и доп. - Москва: Высш. шк., 1990. – 478 с. – ISBN 5-06-001540-8.

5.2.2. Издания из ЭБС

1. 1. Савченко Н.Д. Основы физики [Электронный ресурс]: учеб. пособие. Ч. 1: Механика. Электродинамика. Термодинамика / Н.Д. Савченко, Т.В. Кузьмина, Т.В. Рахлецова. – Чита: ЗабГУ, 2015. – 233 с. – ISBN 978-5-9293-1231-1.

5.3. Базы данных, информационно-справочные и поисковые системы

Название	Ссылка
Информационная система «Единое окно доступа к образовательным ресурсам	http://window.edu.ru/
Научная Электронная Библиотека	https://elibrary.ru/
Электронные версии учебников, пособий, методических разработок, указаний и рекомендаций по всем видам учебной работы, предусмотренных вузовской	http://www.zabgu.ru/

рабочей программой, находящиеся в свободном доступе для студентов, обучающихся в вузе, на внутри сетевом	
сервере	
Интернет-тестирование	https://test.i-exam.ru/index.html

6. Перечень программного обеспечения

Программное обеспечение общего назначения: ОС Microsoft Windows, Microsoft Office, ABBYY FineReader, ESET NOD32 Smart Security Business Edition, Foxit Reader, АИБС "МегаПро".

Программное обеспечение специального назначения:

1) 1С-Битрикс: Корпоративный портал - Компания 1С: Предприятие 8. Комплект для обучения в высших и средних учебных заведениях 7-Zip ABBYY FineReader Adobe Audition Adobe Flash Adobe In Design Adobe Lightroom Adobe Photoshop

7. Материально-техническое обеспечение дисциплины

Наименование помещений для проведения учебных занятий и для самостоятельной работы обучающихся	Оснащенность специальных помещений и помещений для самостоятельной работы
Учебные аудитории для проведения занятий лекционного типа	Состав оборудования и технических средств обучения указан в паспорте аудитории,
Учебные аудитории для проведения практических занятий	закрепленной расписанием по факультету
Учебные аудитории для проведения лабораторных занятий	
Учебные аудитории для промежуточной аттестации	
Учебные аудитории для проведения групповых и индивидуальных консультаций	закрепленной расписанием по кафедре
Учебные аудитории для текущей аттестации	

8. Методические рекомендации по организации изучения дисциплины

Лекции являются основным источником теоретического материала по дисциплине «Физика». Посещение и конспектирование лекций является обязательной составляющей успешного освоения дисциплины обучающимися. Для эффективного освоения материала дисциплины «Физика» необходимо выполнение следующих требований:

- обязательное посещение всех лекционных и практических занятий, способствующее

системному овладению материалом курса;

- все вопросы соответствующих разделов и тем по дисциплине необходимо фиксировать (на любых носителях информации);
- обязательное выполнение домашних заданий является важнейшим требованием и условием формирования целостного и системного знания по дисциплине;
- обязательность личной активности каждого студента на всех занятиях по дисциплине;
- в случаях неясности каких-либо вопросов, обсуждаемых на занятиях, необходимо задать соответствующие вопросы преподавателю, а не оставлять их непонятыми;
- в случаях пропусков занятий по уважительным причинам студентам предоставляется право подготовки и представления заданий и ответов на вопросы изученного материала, с расчетом на помощь преподавателя в его усвоении;
- в случаях пропусков без уважительной причины студент обязан самостоятельно изучить соответствующий материал;
- необходимым условием является самостоятельность и инициативность студентов при контроле набора баллов по дисциплине для успешного прохождения промежуточной аттестации.

Порядок организации самостоятельной работы студентов

Самостоятельная работа студентов предполагает:

- самостоятельный поиск, обработку (анализ, синтез, обобщение и систематизацию), адаптацию необходимой по дисциплине информации;
- выполнение заданий для самостоятельной работы;
- изучение и усвоение теоретического материала, представленного на лекционных занятиях и в соответствующих литературных источниках (рекомендуемая основная и дополнительная литература);
- самостоятельное изучение отдельных вопросов курса;
- подготовка к практическим и лабораторным занятиям, в соответствии с рекомендациями преподавателя (выполнение конкретных заданий, соответствующие организационные действия и т.д.).

Порядок организации лабораторной работы студентов

Лабораторная работа студентов предполагает сознательной активной работы не только в лаборатории при сборке установки и проведении измерений, но и дома при под-готовке к измерениям, обработке результатов и составления отчета.

Выполнение лабораторной работы есть определенная последовательность действий:

- подготовка к эксперименту;
- проведение измерений;
- обработка полученных результатов;
- формулировка выводов и написание отчета.

Для грамотного и быстрого их выполнения должна сложиться определенная система знаний и умений (ориентировочная основа действия), которая обеспечит правильное и рациональное исполнение действия.

Поэтому выполнение каждой лабораторной работы по физике необходимо начинать с изучения ее описания и приведения знаний в систему, а именно:

- ясно представить себе общую цель данной конкретной лабораторной работы и последовательность задач, решение которых приведет к достижению окончательной цели:
- знать, какое физическое явление изучается в данной работе, какими зависимостям связаны описывающие его величины;
- знать основные особенности объекта исследования
- изучить и уметь объяснить физические основы используемых в работе методов

измерения искомых величин;

- уметь нарисовать принципиальную схему используемой установки и знать назначение каждого из ее узлов;
- знать последовательность выполнения этапов лабораторной работы;
- иметь общее представление об ожидаемых результатах проводимого эксперимента и уметь выбрать метод, нужный для их математической обработки

Порядок организации студентов на практическом занятии

На практических занятиях обобщаются и систематизируются знания полученные на лекционных занятиях и формируются умения решать типовые задачи. При решении задач по физике студент должен уметь:

- выделять описываемое явление (объект), анализировать условие задачи;
- выполнять построение модели явления;
- формулировать выводы из модели;
- выявлять применения полученных знаний в профессиональной деятельности.

Татьяна Витальевна Кузьмина	
Типовая программа утверждена	
Согласована с выпускающей кафедрой	
Заведующий кафедрой	
	_г.

Разработчик/группа разработчиков: