МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Забайкальский государственный университет» (ФГБОУ ВО «ЗабГУ»)

УТВЕРЖДАЮ:
Декан факультета
Факультет естественных наук, математики и технологий
Токарева Юлия Сергеевна
«»20 г.
ІИНЫ (МОДУЛЯ) единиц(ы) - Энерго- и ресурсосберегающие
имии и биотехнологии ержденным приказом йской Федерации от №

Профиль – Энерго- и ресурсосберегающие химические процессы производств (для набора 2021)

Форма обучения: Заочная

1. Организационно-методический раздел

1.1 Цели и задачи дисциплины (модуля)

Цель изучения дисциплины:

Целью преподавания физики является формирование у студентов, обучающихся по направлению 18.03.02 "Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии" профиля «Энерго- и ресурсосберегающие химические процессы производств», представлений и понятий о наиболее общих закономерностях различных форм движения неживой материи, как научном фундаменте профессиональной подготовки, знакомство с методами теоретического и экспериментального изучения явлений, развитие научного мышления. Предметные: - изучение основ физической науки: ее основных понятий, законов и теорий; - формирование естественнонаучного взгляда на мир; - овладение способами естественнонаучной деятельности, методами научного познания. Личностные: - развитие личности к логическому, аналитическому, критическому мышлению; - формирование готовности к саморазвитию, обучению в течение всей жизни; - формирование личной ответственности в принятии решений; - развитие общих способностей (общения и сотрудничества точности и продуктивности в решении задач).

Задачи изучения дисциплины:

в процессе изучения дисциплины "Физика" студенты обучающихся по направлению по направлению 18.03.02 "Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии", должны овладеть системой знаний об основных физических явлениях и методах их исследования; развитие умений систематизации и анализа информации, развитие способности к самообучению, самоконтролю и самооценке. Уметь применять систему фундаментальных знаний для формулирования и решения задач прикладной химии и информатики.

1.2. Место дисциплины (модуля) в структуре ОП

Для успешного освоения дисциплины студент должен иметь базовую подготовку по математике, химии и физике в объеме программы средней школы, а также по разделам высшей математики: векторная алгебра, дифференциальное и интегральное исчисление, дифференциальные уравнения, теория вероятности. Дисциплина «физика» входит в в блок Б1.,базовой программы бакалавриата в соответствии с ФГОС 3++ и относится к базовым дисциплинам, обязательным для изучения студентам, общающихся по направлению по направлению 18.03.02 "Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии" профиля «Энерго- и ресурсосберегающие химические процессы производств» Дисциплина изучается на 1 и 2 курсах, в 1, 2 и 3 семестрах

1.3. Объем дисциплины (модуля) с указанием трудоемкости всех видов учебной работы

Общая трудоемкость дисциплины (модуля) составляет 10 зачетных(ые) единиц(ы), 360 часов.

Виды занятий	Семестр 1	Семестр 2	Семестр 3	Всего часов
--------------	-----------	-----------	-----------	-------------

Общая трудоемкость				360
Аудиторные занятия, в т.ч.	14	14	14	42
Лекционные (ЛК)	6	6	6	18
Практические (семинарские) (ПЗ, СЗ)	4	4	4	12
Лабораторные (ЛР)	4	4	4	12
Самостоятельна я работа студентов (СРС)	94	94	58	246
Форма промежуточной аттестации в семестре	Зачет	Экзамен	Экзамен	72
Курсовая работа (курсовой проект) (КР, КП)				

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые рез	вультаты освоения образовательной программы	Планируемые результаты обучения по дисциплине
Код и наименование компетенции	Индикаторы достижения компетенции, формируемые в рамках дисциплины	Дескрипторы: знания, умения, навыки и (или) опыт деятельности
УК-1	УК1.1.демонстрирует знание особенностей системного и критического мышления и готовность к нему	Знать: : основные разделы физики и сущность основных физических явлений, изучаемых в каждом разделе, примеры их проявлений в природе и технике Уметь: строить связный рассказ об изучаемом

		явлении с использованием необходимых доказательств и выводов, систематизировать информацию в форме сравнительных таблиц; Владеть: навыками приближённых вычислений, округления результатов, представления чисел в стандартной форме и перевода единиц измерения;
УК-1	УК-1.2. осуществляет поиск информации, необходимой для решения задачи	Знать: основные физические теории и границы их применимости, а также круг явлений и соответствующих им законы, которые могут быть объяснены на основе этих теорий и основные направления практического применения изучаемых теорий и законов; Уметь: осуществлять поиск информации, необходимой для решения задачи Владеть: навыками выявления и классификации процессов протекающих на объектах профессиональной деятельности
УК-1	УК-1.3. анализирует источник информации с точки зрения временных и пространственных условий его возникновения	Знать: : основные направления практического применения изучаемых теорий и законов физики Уметь: анализировать источник информации с точки зрения временных и пространственных условий его возникновения;

		Владеть: навыками анализа и классификации информации с точки зрения анализирует источник информации с точки зрения временных и пространственных условий его возникновения
ОПК-2	ОПК-2.2 Использует физические методы для решения задач профессиональной деятельности	Знать: простейшие модели и основные понятия, используемые при изучении разных разделов физики; единицы измерения физических величин в системе СИ; законы для основных физических явлений по разным разделам физики в словесной и аналитической формулировке Уметь: анализировать зависимости между величинами в законах, заданных в аналитической или графической форме с использованием математических методов исследования функций; строить обоснованные выводы на основе проведённого анализа;. Владеть: навыками решения систем уравнений;навыками дифференцирования и интегрирования простых функций.

3. Содержание дисциплины

3.1. Разделы дисциплины и виды занятий

3.1 Структура дисциплины для заочной формы обучения

Модуль	Номер	Наименование	Темы раздела	Всего	Аудиторны	С	
1110,4,511	riomep	Trainionobanno	темы раздела		Пудпорпы	`	1

	раздела	раздела		часов	е з	анят	ия
					Л К	П 3 (С 3)	Л Р
1	1.1	Кинематика	Кинематика материальной точки, поступательного и вращательного движений твердого тела	20	2	2	0
	1.2	Динамика	Динамика материальной точки и поступательного движения твердого тела. Типы сил в механике. Работа и энергия. Элементы динамики твердого тела. Элементы механики жидкости и газа.	18	2	0	0
	1.3	Законы сохранения	Законы сохранения импульса и момента импульса. Закон сохранения энергии	16	0	0	2
	1.4	Элементы специальной теории относи тельности	Постулаты и основные соотношения СТО	12	0	0	0
2	2.1	Молекулярная физика	Молекулярно- кинетическая теория идеального газа. Основные законы и уравнения МКТ.	16	2	2	0
	2.2	Термодинами ка	Законы термодинамики. Термодинамические процессы, Циклы.	26	0	0	2
3	3.1	Электромагни тное поле в вакууме	Основные и дополнительные характеристики электромагнитного поля. Теорема Гаусса. Работа в электрическом и магнитном полях. Теорема о циркуляции.	40	4	2	0

	3.2	Электромагни тное поле в веществ	Диэлектрики в электрическом поле. Магнитные свойства вещества.	22	0	2	0	20
	3.3	Проводимость разных сред.	Постоянный электрический ток. Электрический тое в разных средах.	24	0	0	4	20
4	4.1	Колебательны е процессы	Свободные колебания в механических и электромагнитных системах. Переменный ток как вынужденные колебания. Фазовые соотношения в цепи переменного тока.	22	2	0	0	20
5	5.1	Волновые процессы	Волновые процессы. Основные характеристики. Уравнение волны. Классификация и свойства упругих и электромагнитных волн	10	2	0	4	4
	5.2	Волновая оптика	Основные законы и характеристики теплового излучения. Фо тоэлектрический эффект.	6	0	2	0	4
6	6.1	Корпускулярн о-волновой дуализм	Квантовая природа излучения	6	2	0	0	4
	6.2	Квантовая оптика	Основные законы и характеристики теплового излучения. Фо тоэлектрический эффект	8	0	2	0	6
	6.3	Элементы квантовой механики	Соотношение неопределенностей. Волновая функция и ее физический смысл. Уравнение Шредингера	4	2	0	0	2
7	7.1	Современная теория строения	Атом водорода в квантовой механике. Квантовые числа.	12	0	0	0	12

	атома	Принцип Паули. Периодическая система Д.И. Менделеева					
7.2	Элементы физики твердого тела	Понятие о зонной теории твердых тел. Металлы, диэлектрики и полупроводники по зонной теории.	12	0	0	0	12
7.3	Элементы физики атомного ядра и элементарных частиц	Размер, состав, заряд атомного ядра. Дефект масс и энергия связи атомного ядра. Ядерные силы. Радиоактивность. Классификация элементарных частиц.	14	0	0	0	14
Итого				18	12	12	246

3.2. Содержание разделов дисциплины

3.2.1. Лекционные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Кинематика материальной точки, поступ ательного и вращательног о движений твердого тела	Понятие состояния в классической механике. Модели механики. Кинематика поступательного и вращательного движений.	2
	1.2	Динамика материальной точки и посту пательного движения твердого тела. Типы сил в механике. Работа и энерг ия.Элементы динамики твердого тела.	Динамика материальной точки и поступательного движения твердого тела. Типы сил в механике. Работа и энергия. Элементы динамики твердого тела.	2
2	2.1	Молекулярно- кинетическая	Распределение Максвелла и Больцмана. Средняя энергия молекул	2

		теория идеального газа. Основные законы и уравнения МКТ.		
3	3.1	Основные и до полнительные характеристик и электромагн итного поля. Теорема Гаусса. Работа в электрическо м и магнитном полях. Теорема о циркуляции.	Основные характеристики и свойства электростатического и магнитного полей.	4
4	4.1	Свободные колебания в механических и электромагн итных системах. Вынужденные колебания	Свободные колебания в механических и электромагнитных системах. Переменный ток как вынужденные колебания. Фазовые соотношения в цепи переменного тока.	2
5	5.1	Волновые процессы. Основные хар актеристики. Уравнение волны. Класси фикация и сво йства. упругих и электромагн итных волн. И нтерференция и дифракция света	Волновые процессы. Основные характеристики. Уравнение волны. Классификация и свойства упругих и электромагнитных волн. Принцип Гюйгенса. Распространение волн в однородной и неоднородной среде и при переходе из одной среды в другую.Интерференция волн. Интерференция, дифракция света.	2
6	6.1	Квантовая природа излучения	Связь между волновыми и корпускулярными характеристиками света и вещества. Длина волна де Бройля.	2

	6.3	Соотношение неопределенн остей. Волновая функция и ее физический смысл. Уравнение Шредингера	Основные понятия квантовой механики. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний.	2
7				

3.2.2. Практические занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.1	Кинематика материальной точки, поступ ательного и вращательног о движений твердого тела	Кинематика материальной точки, поступательного и вращательного движений твердого тела. Решение задач	2
2	2.1	Молекулярно- кинетическая теория идеального газа. Основные законы и уравнения МКТ.	Уравнение состояния идеального газа. Изопроцессы	2
3	3.1	Нахождение основных характеристик электромагнит ного поля.	Решение задач на основании принципа суперпозиции.	2
	3.2	Диэлектрики в электрическо м поле.	Конденсаторы. Соединение конденсаторов.	2
5	5.2	Интерференц ия, дифракция, поляризация.	Интерференция, дифракция, поляризация.	2
6	6.2	Квантовая	Тепловое излучение. Фотоэффект.	2

	Оптика	
7		

3.2.3. Лабораторные занятия, содержание и объем в часах

Модуль	Номер раздела	Тема	Содержание	Трудоемкость (в часах)
1	1.3	Законы сохранения импульса и момента импульса. Закон сохранения энергии	Применение закона сохранения энергии в экспериментальных задачах	2
2	2.2	Термодинами ка	Определение показателя адиабаты	2
3	3.3	Электрически й ток.	Определение сопротивления проводников мостиком Уитстона. Исследования зависимости силы тока, напряжения, мощности и коэффициента полезного действия цепи постоянного тока от сопротивления нагрузки замкнутой цепи	4
5	5.1	Волновые процессы. Основные хар актеристики. Уравнение волны. Класси фикация и свойства упругих и эле ктромагнитны х волн.	Определение скорости звука в воздухе методом стоячей волны.	4
7				

3.3. Содержание материалов, выносимых на самостоятельное изучение

Модуль	Номер раздела	Содержание материалов, выносимого на	Виды самостоятельной деятельности	Трудоемкость (в часах)
		самостоятельное		
		изучение		

1	1.1	Баллистическое движение. Решение кинематических задач первого и второго типа.	Решение задач. Составление конспектов.	16
	1.2	Законы Кеплера. Поле тяготения и его напряженность. Космические скорости. Неинерциальные системы отсчета. Силы инерции. Элементы гидростатики	Решение задач по динамике. Конспект.	16
	1.3	Законы сохранения импульса и момента импульса. Закон сохранения энергии. З Уравнение движения тел переменной массы. Свободные оси вращения. Гироскоп	Расчет лабораторной работы. Решение задач на законы сохранения. Конспект.	14
	1.4	Постулаты и основные соотношения СТО	Конспект. Решение задач	12
2	2.1	Реальные газы, жидкости и твердые тела	Конспект. Решение задач	12
	2.2	Уравнение состояния идеального газа. Первое начало термодинамики и его применение к изопроцессам. Превращение внутренней энергии в механическую. Принцип действия тепловой машины. Второе начало термодинамики и его статистический смысл. Реальные газы, жидкости и твердые тела	Решение задач. Конспект. Электронные ресурсы.	24
3	3.1	Применение принципа суперпозиции, теоремы Гаусса и теоремы о циркуляции для решения задач.	Электронные ресурсы, конспект, решение задач	34
	3.2	Условия на границе раздела двух	Конспект. Электронный ресурс.	20

		диэлектриков и магнетиков. Пьезоэффект, Сегнетоэлектрики, ферромагнетики		
	3.3	Электронная теория проводимости металлов. Расчет цепей постоянного тока. Проводимость газов, растворов, электролитов.	Электронный ресурс. Конспект. Решение задач.	20
4	4.1	Дифференциальные уравнения собственных, затухающих и вынужденных колебаний и их решения. Автоколебательные системы. Принцип обратной связи.	Конспект. Электронные ресурсы. Решение задач.	20
5	5.1	Звуковые волны. Эффект Доплера. Линзы, правила построения в тонких линзах.	Конспект. Электронные ресурсы. Решение задач.	4
	5.2	Интерференция, дифракция, поляризация. Взаимодействие света с веществом.	Конспекты. Электронные ресурсы. Решение задач.	4
6	6.1	Единств корпускулярных и волновых свойств электромагнитного излучения.	Электронные ресурсы. Конспект	4
	6.2	Основные законы и характеристики теплового излучения. Фот оэлектрический эффект	Электронный ресурс. Конспект. Решение задач	6
	6.3	Линейный гармонический осциллятор в квантовой механике. Туннельный эффект	Конспект. Электронный ресурс.	2
7	7.1	Атом водорода в квантовой механике. Квантовые числа. Принцип Паули.	Электронные ресурсы. Конспект.	12

	Периодическая система Д.И. Менделеева		
7.2	Понятие о зонной теории твердых тел. Металлы, диэлектрики и полупроводники по зонной теории.	Электронные ресурсы, конспект	12
7.3	Размер, состав, заряд атомного ядра. Дефект масс и энергия связи атомного ядра. Ядерные силы. Радиоактивность. Классификация элементарных частиц.	Электронный ресурс; Конспект.	14

4. Фонд оценочных средств для проведения текущей и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств текущего контроля и промежуточной аттестации по итогам освоения дисциплины представлен в приложении.

Фонд оценочных средств

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Основная литература

5.1.1. Печатные издания

1. 1. Савельев, Игорь Владимирович. Курс физики: В 3 т. Т.1: Механика. Молекулярная физика / Савельев Игорь Владимирович. - Москва: Наука, 1989. - 352 с.: ил. ISBN — 5-02-014430-4(Т.1). Количество экземпляров: 158. 2. Савельев, Игорь Владимирович. Курс общей физики. Т. 2: Электричество и магнетизм. Волны. Оптика / Савельев Игорь Владимирович. - 3-е изд., испр. - Москва: Наука. Гл. ред. физ.-мат. лит., 1988. — 496 с.: ил. — 1-20. Количество экземпляров: 18. 3. Савельев, И.В. Курс общей физики: Т. 3: Оптика. Атомная физика. Физика атомного ядра и элементарных частиц / И. В. Савельев. - 4-е изд., стер. - Москва: Наука. Гл. ред. физ.-мат. лит., 1987. — 528 с.: ил. — 0-85. Количество экземпляров: 46.

5.1.2. Издания из ЭБС

1. 1. Родионов, Василий Николаевич. Физика: Учебное пособие / Родионов Василий Николаевич; Родионов В.Н. - 2-е изд. - М.: Издательство Юрайт, 2017. - 295. - (Университеты России). - ISBN 978-5-534-01280-4. Количество экземпляров: 0 + е. 2. Ильин, Вадим Алексеевич. Физика: Учебник и практикум / Ильин Вадим Алексеевич; Ильин В.А., Бахтина Е.Ю., Виноградова Н.Б., Самойленко П.И. - М.: Издательство Юрайт,

2017. - 399. - (Бакалавр. Прикладной курс). - ISBN 978-5-534-01411-2. Количество экземпляров: 0 + e.

5.2. Дополнительная литература

5.2.1. Печатные издания

1. 1. Верхотуров, Анатолий Русланович. Физика: учеб. пособие / Верхотуров Анатолий Русланович, Шамонин Виктор Александрович. - Чита: ЧитГУ, 2011. - 176 с. - ISBN 978-5-9293-0600-6. Количество экземпляров: 169. 2. Верхотуров, Анатолий Русланович. Физика: учеб. пособие / Верхотуров Анатолий Русланович, Шамонин Виктор Александрович, Белкин Сергей Юрьевич. - Чита: ЧитГУ, 2010. - 243 с. - ISBN 978-5-9293-0646-4. Количество экземпляров: 164. 3. Трофимова, Т. И. Курс физики: учеб. пособие / Т. И. Трофимова. - 2-е изд., испр. и доп. - Москва: Высш. шк., 1990. - 478 с. - ISBN 5-06-001540-8. Количество экземпляров: 80. 4. Савченко, Н.Д. Основы физики: учеб. пособие. Ч. 1: Механика. Электродинамика. Термодинамика / Н. Д. Савченко, Т. В. Кузьмина, Т. В. Рахлецова. - Чита: ЗабГУ, 2015. - 233 с. - ISBN 978-5-9293-1231-1. Количество экземпляров: 50 + е. 5. Основы физики: учеб. пособие. Ч. II: Физика колебаний и волн. Основы квантовой механики. Физика атомного ядра и элементарных частиц / Н.Д. Савченко [и др.]. - Чита: ЗабГУ, 2015. - 267 с. - ISBN 978-5-9293-1460-5. - ISBN 978-5-9293-1162-8. Количество экземпляров: 10 + е.

5.2.2. Издания из ЭБС

1. 1. Трофимова Т.И. Руководство к решению задач по физике. 3-е изд., испр. и доп. Учебное пособие для прикладного бакалавриата. Трофимова Т.И., -М.: Издательство Юрайт, 2017.-265с.- https://www.biblio-online.ru/viewer/1B164B8C-5D56-49A5-AE9B-E2C23FF6479A.

5.3. Базы данных, информационно-справочные и поисковые системы

Название	Ссылка
Информационная система «Единое окно доступа к образовательным ресурсам»	http://window.edu.ru
Научная Электронная Библиотека	http://www.e-library.ru
Электронные версии учебников, пособий, методических разработок, указаний и рекомендаций по всем видам учебной работы, предусмотренных вузовской рабочей программой, находящиеся в свободном доступе для студентов, обучающихся в вузе, на внутри сетевом сервере.	http://www.zabgu.ru
Интернет-тестирование	http://test.i-exam.ru

6. Перечень программного обеспечения

Программное обеспечение общего назначения: ОС Microsoft Windows, Microsoft Office, ABBYY FineReader, ESET NOD32 Smart Security Business Edition, Foxit Reader, АИБС "МегаПро".

Программное обеспечение специального назначения:

1) 1С-Битрикс: Корпоративный портал - Компания 1С: Предприятие 8. Комплект для обучения в высших и средних учебных заведениях 7-Zip ABBYY FineReader Adobe Audition Adobe Flash Adobe In Design Adobe Lightroom Adobe Photoshop

7. Материально-техническое обеспечение дисциплины

Наименование помещений для проведения учебных занятий и для самостоятельной работы обучающихся	Оснащенность специальных помещений и помещений для самостоятельной работы
Учебные аудитории для проведения занятий лекционного типа	Состав оборудования и технических средств обучения указан в паспорте аудитории,
Учебные аудитории для проведения практических занятий	закрепленной расписанием по факультету
Учебные аудитории для проведения лабораторных занятий	
Учебные аудитории для промежуточной аттестации	
Учебные аудитории для проведения групповых и индивидуальных консультаций	Состав оборудования и технических средств обучения указан в паспорте аудитории,
Учебные аудитории для текущей аттестации	закрепленной расписанием по кафедре

8. Методические рекомендации по организации изучения дисциплины

Лекции являются основным источником теоретического материала по дисциплине «Физика».

Посещение и конспектирование лекций является обязательной составляющей успешного освоения дисциплины обучающимися.

Для эффективного освоения материала дисциплины «Физика» необходимо выполнение следующих требований:

- обязательное посещение всех лекционных и практических занятий, способствую-щее системному овладению материалом курса;
- все вопросы соответствующих разделов и тем по дисциплине необходимо фиксировать (на любых носителях информации);
- обязательное выполнение домашних заданий является важнейшим требованием и условием

формирования целостного и системного знания по дисциплине;

- обязательность личной активности каждого студента на всех занятиях по дисциплине;
- в случаях неясности каких-либо вопросов, обсуждаемых на занятиях, необходимо задать

соответствующие вопросы преподавателю, а не оставлять их непонятыми;

- в случаях пропусков занятий по уважительным причинам студентам предоставляется право

подготовки и представления заданий и ответов на вопросы изученного материала, с расчетом на

помощь преподавателя в его усвоении;

- в случаях пропусков без уважительной причины студент обязан самостоятельно изучить соответствующий материал;
- необходимым условием является самостоятельность и инициативность студентов при контроле

набора баллов по дисциплине для успешного прохождения промежуточной аттестации.

Порядок организации лабораторной работы студентов

Лабораторная работа студентов предполагает сознательной активной работы не только в лаборатории при сборке установки и проведении измерений, но и дома при подготовке кизмерениям, обработке результатов и составления отчета.

Выполнение лабораторной работы есть определенная последовательность действий:

- подготовка к эксперименту;
- проведение измерений;
- обработка полученных результатов;
- формулировка выводов и написание отчета.

Для грамотного и быстрого их выполнения должна сложиться определенная система знаний и

умений (ориентировочная основа действия), которая обеспечит правильное и рациональное исполнение действия.

Поэтому выполнение каждой лабораторной работы по физике необходимо начинать с изучения ее

описания и приведения знаний в систему, а именно:

ясно представить себе общую цель данной конкретной лабораторной

работы и последовательность задач, решение которых приведет к достижению окончательной

цели;

— знать, какое физическое явление изучается в данной работе, какими зависимостям связаны

описывающие его величины;

- знать основные особенности объекта исследования
- изучить и уметь объяснить физические основы используемых в работе методов измерения

искомых величин;

— уметь нарисовать принципиальную схему используемой установки и знать назначение каждого

из ее узлов;

- знать последовательность выполнения этапов лабораторной работы;
- иметь общее представление об ожидаемых результатах проводимого эксперимента и уметь

выбрать метод, нужный для их математической обработки

Порядок организации студентов на практическом занятии

На практических занятиях обобщаются и систематизируются знания, полученные на лекционных

занятиях и формируются умения решать типовые задачи. При решении задач по физике

студент

должен уметь:

- выделять описываемое явление (объект), анализировать условие задачи;
- выполнять построение модели явления;
- формулировать выводы из модели;
- выявлять применения полученных знаний в профессиональной деятельности.

Порядок организации самостоятельной работы студентов

Самостоятельная работа студентов предполагает:

- самостоятельный поиск, обработку (анализ, синтез, обобщение и систематизацию), адаптацию

необходимой по дисциплине информации;

- выполнение заданий для самостоятельной работы;
- изучение и усвоение теоретического материала, представленного на лекционных занятиях и в

соответствующих литературных источниках (рекомендуемая основная и дополнительная литература);

- самостоятельное изучение отдельных вопросов курса;
- подготовка к практическим и лабораторным занятиям, в соответствии с рекомендациями преподавателя (выполнение конкретных заданий, соответствующие организационные действия и

т.д.).

Самостоятельное выполнение контрольных и лабораторных работ является основным средством

освоения теоретического материала курса и приобретения умений и навыков его практического

применения, поскольку только применение знаний обеспечивает их глубокое понимание. Поэтому

рекомендуется следующий порядок работы с учебным материалом по курсу физики:

- а) прочитайте задачу и выделите то физическое явление, о котором идёт речь;
- б) по конспекту лекций и (или) по учебнику, указанному в списке рекомендованной литературы,

выясните сущность явления, выпишите и выучите основные понятия и законы, используемые при

описании данного явления;

- в) используйте алгоритмы решения типовых задач, рекомендованные преподавателем;
- г) ознакомьтесь с примерами решения типовых задач по пособию «Физика: учебные материалы и

контрольные работы» ч.1 и ч..2 в которых подробно описана методика использования основных

законов для построения математической модели конкретной задачной ситуации;

д) необходимые для решения задач справочные материалы можно найти в приложениях к пособию «Физика: учебные материалы и контрольные работы.» ч.1и ч.2 (числовые значения физических констант, а также табличных коэффициентов, характеризующих физические свойства

вещества, размерности и единицы измерения некоторых физических величин, множители и приставки для образования кратных и дольных единиц, названия и обозначения букв греческого

алфавита);

е) при возникновении затруднений четко сформулируйте и запишите вопросы к

преподавателю и

обратитесь за консультацией на практических занятиях или в часы консультаций, определенные

расписанием.

ж) при выполнении лабораторных работ используйте разработанные на кафедре физики методические указания и правила обработки экспериментальных результатов.

Освоение методов математического моделирования простейших физических задачных ситуаций и

сформированность компетенции УК-1, ОПК-2 являются основными критериями при оценке контрольных работ, выполняемых студентами. Представленное в кон-трольной работе решение

должно продемонстрировать понимание студентом сущности физического явления, описанного в

тексте задачи; владение понятийным аппаратом, от-носящимся к рассматриваемому явлению;

знание основных законов, описывающих явление, и – самое главное – умение обосновать особенности применения того или иного закона к условиям конкретной задачи. В связи с этим.

решение должно сопровождаться краткими, но исчерпывающими словесными пояснениями Требования к оформлению домашних контрольных работ

(распечатать и вклеить на обложку тетради для домашних контрольных работ!)

- 1. Все работы выполняются в одной отдельной тетради.
- 2. Тексты заданий распечатываются и вклеиваются (или переписываются) полностью.
- 3. Приводится краткая запись условия и поясняющий рисунок (буквенные обозначения величин в

условии, на рисунке и в решении должны совпадать).

- 4. Решение предваряется кратким описанием условий возникновения и сущности явления, рассматриваемого в задаче.
- 5. Указываются и записываются в общем виде законы (или определения величин), описывающие

рассматриваемое явление, с пояснением всех буквенных обозначений словами и на рисунке или с

помощью графика.

- 6. Каждый шаг дальнейшего решения сопровождается кратким словесным обоснованием (например: учитывая условие задачи....., на основании геометрических соображений...., используя определение величины...., направление вектора.... определяем по пра-вилу......и т. п.).
- 7 . Решение ведется в общем виде (в буквенных обозначениях), а затем выполняется числовой

расчет (в системе СИ).

8. После первой проверки работы преподавателем все исправления по замечаниям обсуждаются

в устной беседе во время практических занятий или на консультации.

Методические рекомендации при подготовке к экзамену по физике

1) При подготовке к экзамену ознакомьтесь с экзаменационными вопросами и раздели-те их на 3-5

групп в соответствии с основными разделами курса.

2) По каждому разделу сначала попытайтесь ответить (письменно) на следующие вопросы: -что изучает данный раздел физики?

- -какие понятия используются при изучении физических явлений в данном разделе?
- какие основные законы установлены для этих явлений?
- 3) Попытайтесь нарисовать структурно-логическую схему, отражающую взаимосвязь основных

понятий и законов рассматриваемого раздела.

....4). Проверьте себя: можете ли вы по памяти воспроизвести структурно логическую схему и

перечень основных понятий и законов, которые необходимо знать к экзамену по изучаемому

разделу курса.

- 5) После того, как вы уяснили общий объём информации и её логическую структуру, выучите
- определения понятий и формулировки законов, указанных в экзаменационных вопросах.
- 6) Просмотрите примеры решения задач по изучаемому разделу (по конспекту лекций и по выполненным в семестре контрольным работам).

Татьяна Витальевна Кузьмина	
Типовая программа утверждена	
Согласована с выпускающей кафедрой	
Заведующий кафедрой	
	г.

Разработчик/группа разработчиков: